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a b s t r a c t

The spherical indentation method of Lee et al. (2005, 2010) [8,10] is extended for property evaluation of
high-strength materials. By considering the finite deformation of elastic indenter due to high-strength of
the indented material, regression functions are generated to map the indentation load–depth curve into
the stress–strain curve. A property evaluation program is then written to produce material properties by
using the indentation load–depth data from the loading/unloading process. Finally, the nano-indention
tests with a spherical indenter are carried on Germanium Ge (100) and Silicon Si (100) to verify the
proposed method using the experimental load–depth curves.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

High-strength materials have wide applications to cutting tools,
surface coatings, components for high temperature, light weight
automotive structures. In the applications, it is essential to
understand the deformation behavior of material to applied load,
i.e. stress–strain relationship. Young's modulus E, yield strength σo,
strain hardening coefficient n are often used to describe the
stress–strain relation.

For general metallic and brittle materials, numerous studies and
techniques are available in the literature to evaluate these material
properties from experimental test data [1]. Tensile/compression tests
are traditionally used to determine the properties of metallic mate-
rials; however, standard specimens including elaborate machining
jobs are needed to accomplish these tests [1]. On the other hand, a
non-destructive and localized indentation method can be used with
micro-size and non-standard specimens to evaluate constitutive
properties, hardness, fracture toughness, residual stress and creep
properties. In contrast to its rather simple testing process, extracting
properties from the indentation test is far from being easy due to the
non-uniform deformation beneath the indenter.

Numerous studies are thus carried out to reveal the char-
acteristics of indention tests [2–10]. In indentation test, required
properties are reversely extracted from the indentation load–
þ82 2 712 0799.
depth curves (and imprint size) generally by using mapping
functions. Sharp indentation produces phase transformation and
micro-cracking even at relatively small loads. The indenter
sharpness has significant effect on the mechanisms and it is hard
to achieve the exact tip-sharpness during the manufacturing
process. All these factors make the problem quite complex to be
expressed analytically. In spherical indentations, phase transfor-
mation and micro-cracking can be avoided.

Tabor [11] proposed an idea to relate the mechanical properties
with indentation load and depth. Afterwards, spherical indentation
techniques are mainly studied to extract mechanical properties
from experimental and numerical data [12–21]. Via extensive finite
element (FE) analyses, Lee et al. [8,10] generated the functions
mapping the indentation load–depth curve into the true stress–
strain curve. They then contrived numerical algorithms which give
the material properties of metallic materials from the load–depth
data of spherical indentation test. Their reverse approaches provide
the properties of general metallic material with high accuracy.
However, the used material property ranges σoo1 GPa keep the
method from applying to high-strength materials.

For high-strength materials, relatively higher load is necessary
to indent the specimen up to the same indentation depth. Con-
sequently, the elastic indenter experiences finite deformation, the
consideration of which is essential in the indentation of high-
strength materials. The above studies [8–21] are mostly based on
rigid or elastic indenter with negligible indenter deformation;
therefore, one cannot directly apply these spherical indentation
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studies for property evaluation of high-strength materials. How-
ever, Albayrak et al. [22] evaluated the E and σo of transparent
Yttria (high-strength material) based on the spherical-tip
assumption, while they considered the indenter deformation via
effective modulus. Based on spherical-tip approximation, the
solution with an irregular indenter tip shape can rather give rea-
sonable elastic load-displacement relationship, but significantly
arbitrary stress distribution and contact area beneath the indenter.

A reliable indentation method for evaluation of material
properties of high-strength materials can be especially useful,
when the cracking of specimen is hard to control during specimen
preparation and testing due to the brittleness of material. For
example in the tensile test, brittle materials are broken even at
very small strain. Despite this compelling usefulness of indenta-
tion test, studies on the indentation methods for property eva-
luation of high-strength materials are limited in the literature.

In this study, by extending the method of Lee et al. [10], a
technique is developed to evaluate the properties of high-strength
materials from spherical indentation. Considering finite deforma-
tion of elastic indenter, we generate enhanced mapping functions.
The range of yield strain is divided into three sections based on the
regression characteristics; an independent program is generated
for each section, and then 3 independent programs are integrated
into a single property evaluation program. By applying the pro-
gram to the spherical indentation test, material properties are
obtained from a single indentation load–depth curve. Finally, the
nano-indention tests with spherical indenters are carried on Ger-
manium Ge (100) and Silicon Si (100) to verify the proposed
method by using the experimental load–depth curves.
2. Finite element model for spherical indentation

The axisymmetric FE model (Fig. 1) for the spherical indenta-
tion simulation is formed, and the commercial FE software Aba-
qus/standard (ver. 6.12) [23] is used for the FE analysis. Consider-
ing axisymmetry of both geometry and loading, 4-node axisym-
metric elements (CAX4) are used to model the indenter and spe-
cimen. To capture the large deformation and steep stress gradient,
the sub-indenter region is refined with relatively small elements.
To merge the small elements with large elements, the trapezoidal
elements are used near the contact region, where the constrained
mid-nodes in multi-point constrain (MPC) [23] tends to give dis-
crete stress and strain values [8]. Therefore, MPC is used only in
the region far from the contact region. The axisymmetric FE model
Fig. 1. FE model for hmax/D¼20% indentation analyses.
consists about 16,700 nodes and 16,000 elements. For the sphe-
rical indenter with diameter D¼1 μm, the diamond material
properties (Young's modulus EI¼1000 GPa, Poisson's ratio
νI¼0.07) are assigned, while the friction coefficient f¼0.1 is con-
sidered in the contact between indenter and the specimen [11,24].

A point at l/D¼0.3, 2r/d¼0.8, where the strain gradient is
relatively small [10], is selected as a data acquisition point to avoid
the frictional effect on the effective stress σ and plastic strain εp
measurements. Here l and r denote the vertical and radial distance,
respectively, from the center of the contact, and d denotes the
actual contact diameter. Note that the use of data acquisition point
is only practical in FE simulations and cannot be applied in the
experiments. The non-linear geometry change (NLGEOM) FE
analyses are performed for the isotropic elasto-plastic materials,
which obey J2 incremental plastic theory.

In a shallow spherical indentation, the indenter deformation is
insignificant due to relatively small indentation load P at shallow
indentation depth; there is no finite indenter deformation. When
the maximum indentation depth is relatively small, materials with
different properties can yield almost identical load–depth curves,
which result in significant errors of evaluated material properties
[8,10]. It can be solved by increasing the indentation depth. In this
study, 20% of indenter diameter is thus selected as a maximum
indentation depth (hmax/D¼20%) as that of Lee et al. [10].

2.1. Material model for FE analysis

Eq. (1) is used here to express the stress–strain relationship
with Hollomon's piecewise power law hardening material model
[25].

ϵt
ϵo

¼
σ
σo

for σrσo

σ
σo
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8<
: ð1Þ

Here σo, εo (¼σo/E), εt are the yield strength, yield strain and
total strain, respectively. εt (¼εeþεp) is equal to the sum of elastic
and plastic strains and n is the strain-hardening exponent. The
material is assumed as perfectly elastic for n¼1 and elastic-
perfectly plastic for n¼1. For 1ono1, the material shows the
hardening behavior. Differently from the Ramberg–Osgood mate-
rial model in other studies, the power-law functions of Eq. (1) has
clear distinction between elastic and plastic regions at εo.

2.2. Enhanced evaluation of indentation contact diameter

Fig. 2 compares the diamond indenter deformation with rigid
indenter, when E¼300 GPa, εo¼0.1, n¼3 are used as the specimen
material properties. The diamond indenter deviates from the
spherical shape due to large deformation. In FE study, d is calcu-
lated from the nodal coordinates of the last nodes in contact,
Fig. 2. Deformed shape of diamond indenter at loaded state.
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which can be obtained by checking the contact status of nodes. If
we assume that the contact diameter d is up to the last node with
non-zero contact pressure, then the maximum error in d calcula-
tion is half of the element size e. Considering this, we evaluate d by
taking the intersection ( ) of two lines that pass through the last
two nodes in contact and first two nodes not in contact, respec-
tively (Fig. 3) following the idea of Hay and Crawford [26]. Fig. 4
compares the calculated d values from intersection method (solid
line) with those calculated from the last node in contact (open
circle). The difference in d values from two methods is less than
0.2%. To detect the deformation carefully in the FE analyses,
0.0625% of the indenter diameter is used as a minimum element
size at the surface.
3. Property evaluation techniques

3.1. Evaluation of Young's modulus from unloading part of load–
depth curve

Young's modulus E is closely related to initial slope S in the
unloading load–depth curve and the actual contact area [9,20,27].
Sneddon [27] and Pharr et al. [28] proposed an equation to predict
E from S based on the assumption of an axisymmetric indenter
penetrating the specimen. The effective modulus was introduced
to include the deformation of the indenter. During the indentation,
the materials exhibit pile-up/sink-in, which significantly depend
on material properties and indentation depth. To consider the
effect of pile-up/sink-in on actual contact area measurements, Lee
et al. [8] introduced a correction factor κ into Young's modulus
formula for the elastic–plastic materials as

E¼ 1�ν 2

dmax= κSð Þ� 1�νI 2
� �

=EI
ð2Þ
Fig. 3. Evaluation of d by taking the intersection ( ) of two lines that are passing
through the last two nodes in contact and first two nodes not in contact, respec-
tively [26].

Fig. 4. d/D vs. ht /D for various values of n; open symbol from last contact node and
solid line from intersection point.
where the maximum contact diameter dmax is measured at hmax by
considering the effect of pile-up/sink-in. E and EI are the Young's
modulus, ν and νI are the Poisson's ratios of the specimen and
indenter, respectively. The regression range (rso0.1) used for
linear regression of S is defined as

rs � Pmax�Pð Þ=Pmax ð3Þ
P max is the maximum load at h max. S decreases with increasing rs,
and it converges for rso0.1 [8].

In the indention test and FE analysis, pile-up/sink-in phenom-
ena near the contact edge make it difficult to accurately measure
or predict the actual contact diameter d (or contact area). With the
rigid spherical indenter, the actual contact diameter can be
obtained from the shape of spherical geometry even with the pile-
up/sink-in phenomena as follows

d¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD�h2

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2htD� c2ht

� �2q
ð4Þ

where h is the real indentation depth, when pile-up/sink-in phe-
nomenon occurs during the indentation. ht is the indentation
depth measured from the reference surface. Hill et al. [29] defined
c2 as the ratio of h and ht (c2� h/ht). As it is difficult to measure d,
Lee et al. [10] expressed c2 as a function of indentation depth ht
and the material properties based on the FE analyses in the form of
Eq. (5). The calculated c2 values from Eq. (5) are then used in
Eq. (4) to obtain the actual contact diameter d.

c2 ¼ f d0 εo;n; E=EI
� �þ f d1 εo;n; E=EI

� �
ln ht=D
� � ð5Þ

Lee et al. [10] used c2 of Eq. (5) to calculate d in Eq. (4), which is
valid for a rigid indenter or an elastic indenter with negligible
deformation. By performing indentation FE analyses with general
metallic materials (σo¼100–3000 MPa), Lee et al. [10] wrote a
property evaluation program with Eqs. (3) and (4), while they
considered the elastic spherical indenter with negligible indenter
deformation. For high-strength materials (σo¼1–30 GPa), their
property evaluation program with Eqs. (3) and (4) may result in
large error due to finite indenter deformation. Therefore, we
consider the finite indenter deformation for high-strength mate-
rials in the FE analyses to improve the functions for d evaluation.
For E¼100 GPa, σo¼5 GPa, εo¼0.05, n¼3, 5, and 20, Fig. 5 shows
the variation of d against indentation depth ht. As Eq. (2) requires
dmax only, not the variation of d with ht, therefore only upper 25%
of data is used for linear regression as illustrated in Fig. 5. The
regression of (d/D) is given as

d=D
� �¼ f d0 εo;n; E=EI

� �þ f d1 εo;n; E=EI
� �

ln ht=D
� �

f di εo;n; E=EI
� �¼ αdij εo; E=EI

� �
n� j ; i¼ 0;1; j¼ 0;1

αdij εo; E=EI
� �¼ βdijk E=EI

� �
εko ; k¼ 0; 1; 2; 3

βdijk E=EI
� �¼ γdijkl ; l¼ 0;1; 2 ð6Þ
Fig. 5. Regression curves of d/D vs. ln (ht/D) for various values of n.
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With this proposed method for high-strength materials, one
can calculate dmax directly from Eq. (6) at corresponding hmax.
Then, Eq. (2) can be recast as

κ ¼ dmax

S
1�ν2

E
þ1�ν2I

EI

� ��1

ð7Þ

κ is calculated by substituting the initial slope S (regression range:
rso0.1) of unloading load–depth curve into Eq. (7). The regression
of κ is given as

κ¼ f κi εo;n; E=EI
� �¼ ακj εo; E=EI

� �
n� j ; j¼ 0; 1; 2

ακj εo; E=EI
� �¼ βκjk E=EI

� �
εko ; k¼ 0; 1; 2; 3; 4

βκjk E=EI
� �¼ γκjkl ; l¼ 0; 1; 2 ð8Þ

Table 1 lists various material property values used for finite
element analyses and accompanying regression.

3.2. Evaluation of yield strength and strain hardening coefficients

The only information from the indentation test is the load–
depth curve; it should be converted into the stress–strain curve,
which is expressed in terms of E, σo and εo in the power-law
material model.

When σZσo, the Eq. (1) can be written as follows

σ ¼ σo εt=εo
� �1=n ¼ Kε1=nt ð9Þ

where the strength coefficient K and strain hardening coefficient n
are obtained by regressing the stress–strain data calculated from
indentation load–depth curve. At yield point, Eq. (9) becomes

σo ¼ Kε1=no ð10Þ
The elastic stress–strain relation at yield point is given as

σo ¼ Eεo ð11Þ
By combining Eq. (10) with Eq. (11), the yield strength is given

as

σo ¼ Kn=E
� � 1

n� 1 ¼ EðK=EÞ n
n� 1 ð12Þ

By substituting n and K values [obtained from the regression of
stress–strain data with Eq. (9)], the yield strength σo can be
obtained from Eq. (12). Based on εp and σ values at the data
acquisition point (l/D¼0.3, 2r/d¼0.8) in the FE analyses, we
express εp and σ as functions of ht/D and material properties as
follows

εp ¼ f εi εo;n; E=EI
� � ht

D

� �i

f εi εo;n; E=EI
� �¼ αεij εo; E=EI

� �
n� j ; i¼ 0;1;2;3; j¼ 0;1;2;3;4

αεij εo; E=EI
� �¼ βεijk E=EI

� �
εko ; k¼ 0;1;2

βεijk E=EI
� �¼ γεijkl ; l¼ 0;1;2 ð13Þ

ψ ¼ P

D2σ
¼ f ψi εo;n; E=EI

� � ht
D

� �i

f ψi εo;n; E=EI
� �¼ αψij εo; E=EI

� �
n� j ; i¼ 0;1;2;3; j¼ 0;1;2;3;4
Table 1
Material properties for FE analyses.

Parameter Values used for FEA

E 100, 200, 300 GPa
ν 0.3
εo 0.01–0.1
n 1.1, 1.5, 2, 2.5, 3, 4, 5, 7, 10, 13, 20, 50
f 0.1
αψij εo; E=EI
� �¼ βψijk E=EI

� �
εko ; k¼ 0;1;2

βψijk E=EI
� �¼ γψijkl ; l¼ 0;1;2 ð14Þ

The effective stress is calculated from σ� P/(D 2ψ). Note that D
is used to normalize the indentation variables of Eqs. (6), (13) and
(14). On the other hand, dmax is used for normalized expression of
κ in Eq. (7) to reduce the sensitivity of κ to the material properties.
The four normalized indentation variables (d/D,εp,ψ,κ) with
improved regression functions are used to generate property
evaluation programs for high strength materials.
4. Property evaluation program for high-strength materials

4.1. Evaluation of material properties using proposed method

For εo (¼0.01, 0.03, and 0.05), n (¼5, and 50) and E¼100 GPa,
the variations of εp with ht are measured at the data acquisition
point (l/D¼0.3, 2r/D¼0.8) as shown in Fig. 6(a)–(c). Note that the
relationship between εp and ht becomes linear as εo increases or n
decreases. The stress variable ψ also shows the same trend. Var-
iations of εp and ψ with ht are thus regressed in the form of Eqs.
(13) and (14) by dividing the range of εo into three sections. The
sections for εo¼0.01–0.03, 0.03–0.05 and 0.05–0.1 are regressed
with 3, 2 and 1 degree of polynomial, respectively. Based on the
three regression functions, we write three property evaluation
programs A, B and C for each section.

The flow chart of the property evaluation programs is shown in
Fig. 7. After the indentation to hmax¼0.2D, the load–depth curve is
given as input data to the property evaluation program. Initial
value of S is calculated from the unloading load–depth curve. For
the first iteration, we assume the initial values of E i, εio , n i.

Based on the given load–depth data and the assumed values of
Ei, εio , ni, the variation of di, εip, ψ

i are calculated from Eqs. (6), (13)
and (14), and then ψi is converted into σi. By updating data values
of εip and σi into Eq. (9), we convert the load–depth curve into the
corresponding stress–strain curve, thus the values of Kiþ1 and niþ1

are computed from the regression of stress–strain data. Eiþ1 is
then calculated by using Eqs. (2) and (7), where we use the initial
slope S and dimax calculated from Eq. (6) for hmax. Finally, Eiþ1, K iþ1

and niþ1 are substituted into Eqs. (11) and (12) to calculate yield
strength σiþ1

o and yield strain εiþ1
o , which are again used to update

Eiþ1. The calculated εiþ1
o and niþ1 are compared with previous εio

and n i values to compute the relative change e

e¼Max
εiþ1
o �εio
εio

;
niþ1�ni

ni

� �
ð15Þ

The above steps are repeated until the relative changes are
converged within the tolerance. At the end, the material properties
E, σo and n are achieved from the given indentation load–
depth curve.

Using the property evaluation programs A, B and C, we calcu-
late the yield strength σo as shown in Fig. 8 for εo¼0.03 and 0.05,
which are the boundary values for program A (εo¼0.01–0.03) and
B (0.03–0.05), program B and C (0.05–0.1), respectively. Although
three programs use different polynomial degrees for regression,
we get σo with an average error of 1% for the boundary values of
εo¼0.03 and 0.05. For E (¼100, 200, and 300), n (¼5, 7, 13, and
20) and εo (¼0.01–0.1), computed values of εo|computed from the
program C, which is valid for εo¼0.05–0.1, are given as symbols in
Fig. 9. If εoo0.05, then always εo|computedo0.05. Similarly, the
program B valid for εo¼0.03–0.05 always gives εo|computedo0.03 if
εoo0.03. On this observation, by combining three programs A, B,
C, an integrated property evaluation program for εo¼0.01–0.1 is
written with following condition that if the computed yield strain
with program C is εo|computedo0.05, then the program B is used for



Fig. 6. Equivalent plastic strain vs. normalized indentation depth data.
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property evaluation. Similarly, if εo|computedo0.03, program A is
used for property evaluation from the indentation load–
depth curve.

For various properties of high-strength materials, Figs. 10–12
compare the stress–strain curves (symbols) computed from the
property evaluation program to those given as input (solid line) for
FE analyses. Table 2 lists the given and computed material prop-
erties with their relative deviations (errors). In the proposed
method, E and σo are computed with an average error of 0.3% and
0.8%, respectively. We compute n with the average error of 6.4%.

In actual property evaluation, Hyun et al. [5] demonstrated that
n is rather sensitive to the strain range for regression. It is thus
necessary to select an appropriate regression range of material
properties depending on the material.
5. Validation of property evaluation program by nano-
indentation test

In the validation process, experimental load–depth curve is
assigned as input data to the property evaluation program. The
evaluated material properties from the program are then used
as input data for the FE analysis to obtain FE load–depth curve.
Finally, the property evaluation program is validated by com-
paring the experimental load–depth curve with that from FE
analysis.

Nano Indenter-XPTM (Agilent Technologies) with diamond
spherical indenter D¼1 μm is used in the experimental inden-
tation tests. In nanoindentation test, the creep [30] and thermal
drift, which are difficult to distinguish, are very important
sources of error in the material property evaluation such as E
and hardness H. As the amount of creep depends on the loading
rate and the holding period in the nanoindentation, the creep
error on E measurements was reduced by holding the Pmax for a
holding period of 5 s or longer [31]. Although, significant creep
effects at the onset of unloading i.e. a “nose” was observed in
metals [32,33]. Therefore, Feng and Ngan [32] introduced a
creep factor C to correct the creep error on E measurements.
Also, they provided a condition to minimize the thermal drift
during nanoindentation. Since experiments were conducted by
placing the apparatus in an insulated enclosure at room tem-
perature and with holding period of 10 s, we shall assume that
the creep and thermal drift influences are not significant and
can be neglected. The nanoindentation tests are carried out with
silicon Si and germanium Ge crystal specimens with lattice
plane (100). Values of Young's moduli for Si and Ge with lattice
plane are shown in Table 3. The plastic anisotropy of materials
remains as the future work.

For hmax¼200 nm, Fig. 13 shows experimental load–depth
curves from the indentation tests. During unloading, pop-out
phenomenon is observed in the load–depth curves of Si (100)
and Ge (100), which is consistent with the observation of Brady
et al. [36]. The pop-out phenomenon occurs due to phase trans-
formation, which is associated with volume and density changes
of sub-indenter materials. There is a blunt turn between experi-
mental loading and unloading curves due to very small creep
deformation in the holding period. Therefore, we ignore very
initial part of unloading data for accurate measurement of initial
unloading slope S. The creep factor C [32] is calculated for Si (100)
and Ge (100) as CSi¼6.3% and CGe¼7.9%, which are less than 10%;
therefore the creep effects are small [32] and be neglected. With
the measured S, the property evaluation program provides E
values of Si (100) and Ge (100) close to literature values.

Table 4 lists the evaluated E, σo and n from experimental load–
depth curve, and corresponding stress–strain curves are shown in
Fig. 14. The solid lines regress the stress–strain data in the form of
power-law function. For Si (100) and Ge (100), FE load–depth curves
are obtained by using the evaluated material properties of Table 4.
The load–depth curves from FE analyses are in good agreements
with the experimental ones as shown in Fig. 15, where the three



Fig. 7. Flow chart for determination of material properties.
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test curves appear as a single curve. The creep deformation was
included in the experimental load–depth curves, but not in the FE
curves as it was not modeled, which causes some differences in the
initial part of unloading curves between FEA and experiment.
Fig. 15, in some sense, validates the algorithm in Fig. 7.
6. Summaries and conclusions

Based on FE analyses, the spherical indentation method of Lee
et al. [8,10] was extended for property evaluation of high-strength
materials. By considering the finite deformation of elastic indenter
due to high-strength of the indented material, regression functions
were newly generated to map the indentation load–depth curve
into stress–strain curve. The property evaluation programs were
then written to compute the material properties (E, σo, n) by using
the indentation load–depth data measured from the loading/
unloading process. Finally, the proposed property evaluation pro-
gram was validated by using the experimental load–depth curves
of Si (100) and Ge (100) from the nano-indention tests with a
spherical indenter.



Fig. 8. σo|computed vs. iteration data; program A and B compute σo for εo¼0.03, while program B and C compute σo for εo¼0.05.

Fig. 9. Comparisons of εo|computed from program C with εo|given for (a) E¼100, (b) E¼200, and (c) E¼300 GPa; program C is valid in the gray region only.
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Fig. 10. Comparisons of computed stress–strain curves with those given for E¼100 GPa [εo¼(a) 0.01 (b) 0.02 (c) 0.06 and (d) 0.08].

Fig. 11. Comparisons of computed stress–strain curves with those given for E¼200 GPa [εo¼(a) 0.01 and (b) 0.06].
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Fig. 12. Comparisons of computed stress–strain curves with those given for E¼300 GPa [εo¼(a) 0.01 and (b) 0.06].

Table 2
Comparison of computed material property values to those given.

σo/E (GPa) n Computed σo/E (GPa) Error (%) Computed n Difference

1/100 5 0.99/100 1.0/0.0 4.8 �0.2
7 1.00/100 0.0/0.0 6.9 �0.1

13 1.00/100 0.0/0.0 12.6 �0.4
20 1.00/100 0.0/0.0 18.9 �1.1

2/100 5 2.03/100 1.5/0.0 5.2 0.2
7 2.07/100 3.5/0.0 7.9 0.9

13 2.01/99 0.5/1.0 13.3 0.3
20 1.99/100 0.5/0.0 18.7 �1.3

3/100 5 3.01/100 0.3/0.0 5.2 0.2
7 3.02/100 0.7/0.0 7.2 0.2

13 3.00/100 0.0/0.0 12.8 �0.2
20 2.99/100 0.3/0.0 19.0 �1.0

4/100 5 4.04/100 1.0/0.0 5.1 0.1
7 4.01/100 0.3/0.0 7.0 0.0

13 4.00/100 0.0/0.0 12.9 �0.1
20 4.03/100 0.8/0.0 21.7 1.7

5/100 5 5.03/100 0.6/0.0 5.0 0.0
7 5.00/100 0.0/0.0 6.9 �0.1

13 4.98/100 0.4/0.0 12.4 �0.6
20 5.00/100 0.0/0.0 19.3 �0.7

6/100 5 6.03/100 0.5/0.0 5.0 0.0
7 6.02/100 0.3/0.0 7.1 0.1

13 6.00/100 0.0/0.0 12.9 �0.1
20 6.01/100 0.2/0.0 20.8 0.8

8/100 5 8.15/100 1.9/0.0 5.5 0.5
7 8.12/100 1.5/0.0 7.8 0.8

13 8.02/100 0.3/0.0 13.4 0.4
20 8.02/100 0.3/0.0 20.4 0.4

9/100 5 9.15/100 1.7/0.0 5.5 0.5
7 9.13/100 1.4/0.0 7.9 0.9

13 9.02/100 0.2/0.0 13.4 0.4
20 8.96/100 0.4/0.0 17.9 �2.1

2/200 5 1.98/200 1.0/0.0 4.9 �0.1
7 1.98/200 1.0/0.0 6.8 �0.2

13 1.98/200 1.0/0.0 12.3 �0.7
20 1.98/201 1.0/0.5 18.2 �1.8

4/200 5 3.98/199 0.5/0.5 5.0 0.0
7 3.98/200 0.5/0.0 6.9 �0.1

13 3.96/200 1.0/0.0 12.1 �0.9
20 3.94/200 1.5/0.0 17.2 �2.8

6/200 5 6.02/200 0.3/0.0 4.9 �0.1
7 6.03/200 0.5/0.0 7.0 0.0

13 6.06/200 1.0/0.0 13.7 0.7
20 6.13/200 2.2/0.0 26.3 6.3

8/200 5 8.03/200 0.4/0.0 4.9 �0.1
7 8.01/200 0.2/0.0 6.8 �0.2

13 7.97/200 0.4/0.0 12.0 �1.0
20 7.96/200 0.5/0.0 17.6 �2.4

Table 2 (continued )

σo/E (GPa) n Computed σo/E (GPa) Error (%) Computed n Difference

10/200 5 10.0/200 0.0/0.0 5.0 0.0
7 10.0/200 0.0/0.0 7.0 0.0

13 9.96/200 0.4/0.0 11.6 �1.4
20 9.94/200 0.6/0.0 16.8 �3.2

12/200 5 12.1/200 0.8/0.0 5.2 0.2
7 12.0/200 0.0/0.0 7.2 0.2

13 12.0/200 0.0/0.0 13.0 0.0
20 11.9/200 0.8/0.0 18.1 �1.9

16/200 5 16.3/200 1.9/0.0 5.6 0.6
7 16.2/200 1.3/0.0 7.8 0.8

13 16.0/200 0.0/0.0 12.7 �0.3
20 15.9/200 0.6/0.2 17.3 �2.7

18/200 5 18.4/200 2.2/0.0 5.8 0.8
7 18.3/200 1.7/0.0 8.0 1.0

13 18.0/200 0.0/0.0 12.5 �0.5
20 17.8/200 1.1/0.0 15.5 �4.5

3/300 5 2.93/300 2.3/0.0 4.8 �0.2
7 3.00/299 0.0/0.3 7.0 0.0

13 3.02/299 0.7/0.3 13.2 0.2
20 2.98/301 0.7/0.3 18.4 �1.6

6/300 5 6.05/298 0.8/0.7 5.4 0.4
7 6.13/298 2.2/0.7 7.7 0.7

13 6.12/299 2.0/0.3 14.9 1.9
20 5.95/301 0.8/0.3 18.2 �1.8

9/300 5 8.92/301 0.9/0.3 4.7 �0.3
7 8.95/301 0.6/0.3 6.6 �0.4

13 9.05/300 0.6/0.0 13.1 0.1
20 8.97/300 0.3/0.0 18.0 �2.0

12/300 5 12.0/301 0.0/0.3 4.7 �0.3
7 12.0/300 0.0/0.0 6.7 �0.3

13 12.0/300 0.0/0.0 12.0 �1.0
20 12.0/301 0.0/0.3 18.3 �1.7

15/300 5 15.0/300 0.0/0.0 5.1 0.1
7 15.0/300 0.0/0.0 7.0 0.0

13 15.0/300 0.0/0.0 12.8 �0.2
20 15.0/300 0.0/0.0 20.5 0.5

18/300 5 18.2/300 1.1/0.0 5.3 0.3
7 18.2/300 1.1/0.0 7.5 0.5

13 17.9/300 0.6/0.0 12.3 �0.7
20 18.0/300 0.0/0.0 17.9 �2.1

24/300 5 24.4/300 1.7/0.0 5.5 0.5
7 24.2/300 0.8/0.0 7.6 0.6

13 24.0/300 0.0/0.0 13.0 0.0
20 23.8/300 0.8/0.0 16.7 �3.3

27/300 5 27.5/300 1.9/0.0 5.7 0.7
7 27.2/300 0.7/0.0 7.6 0.6

13 26.8/300 0.7/0.0 11.9 �1.1
20 26.6/300 1.5/0.0 15.0 �5.0
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Table 3
Young's moduli of Si and Ge with lattice plane.

lattice plane E (GPa) Reference

Si Ge

(100) 130/129* 104 Wortman and Evans [34]/
(110) 169/168* 138 Callister and Rethwisch [35]*
(111) 188/187* 155

Fig. 13. Load–depth curves obtained from nano-indentation test for (a) Si (100) and (b) Ge (100).

Table 4
Material properties from spherical nano-indentation tests.

Material Test # E (GPa) σo (GPa) n

Si (100) 1 128 2.7 2.9
2 132 2.5 2.9
3 127 2.8 3.0
Avg. 129.0 2.66 2.90

Ge (100) 1 101 3.1 3.8
2 109 3.0 4.3
3 109 3.0 4.3
Avg. 106.3 3.04 4.12

Fig. 14. Stress–strain curves for (a) Si (100) and (b) Ge (100).
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Fig. 15. Comparison of measured load–depth curves to those obtained from FEA. for Si (100) and Ge (100).
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