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The presence of residual stresses (RS) in amaterial causes a shift of the indentation load–displacement curve. The
resulting change in the Kick's law coefficient C can hence be exploited to estimate these RS. By contrast with
axisymmetric indenters, when employing the Knoop indenter with its large aspect-ratio, C is further sensitive
to the indenter's orientation with respect to the principal RS directions. For a wide range of material properties,
maximum and minimum C values are obtained by finite element analysis. It is observed that the RS ratio can be
estimateddirectly from the C ratio, independent ofmagnitude and sign of RS. Further, thefinding thatC values for
the non-equibiaxial RS case can be converted to equivalent C values for two equibiaxial RS cases, made for conical
indentation (J.H. Lee et al., 2010, J Mater Res 25: 2212–2223), is shown to apply to Knoop indentation, too. The
magnitude of RS can thus be determined from the equibiaxial RS case. The equibiaxial RS case is investigated
in detail and mapping functions are established between C and the corresponding RS value. Finally the method
is validated experimentally by comparison with Knoop indentation of bended cross-shaped steel specimens.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Residual stresses (RS) are induced intentionally (e.g., shot peening)
or inevitably (e.g., welding) and may affect fatigue life, corrosion or
wear resistance significantly in a positive or negative way, depending
on the application. In any way, estimating them is crucial when it
comes to design. Several methods have been developed for measuring
RS; destructive methods such as beam bending, hole-drilling [1], and
non-destructive methods such as ultra-sonic methods, micromagnetic
methods, neutron or X-ray diffraction [2]. Many of these methods are
rather expensive or limited in their applicability. The highly versatile in-
dentation test represents a simple non-destructive technique (though
leaving a tiny impression), where specimen preparation is reduced to
aminimum. For estimating RS from indentation, the differences inmax-
imum indentation load, depth, hardness, elastic recovery or pile-up/
sink-in behavior with RS (as compared with the virgin material) have
been exploited.

By analyzing the influence of RS on the indentation load–
displacement curves from finite element (FE) analysis and experiment,
Tsui et al. [3] and Bolshakov et al. [4] showed that RS affect pile-up/sink-
in behavior but not the contact area; the hardness decreases with in-
creasing RS. To explain the fact that the RS effect is more pronounced
for the tensile than for the compressive case, Sines and Carlson [5]
ent of Mechanical Engineering,
provided a simple, yet illustrative mechanical model; while a uniaxial
tensile RS increases the shear stress in the normal plane in which the
RS lies and thus facilitates yielding, in the presence of uniaxial compres-
sive RS, the maximum shear stress lies in a plane normal to the RS,
which means that yielding is unaffected. As Tsui et al. [3] noted, this
oversimplified model however loses its validity in later stages of inden-
tation and when the equibiaxial RS case is approached.

Based on the argument that hardness (defined as the average
contact pressure) is insensitive to equibiaxial RS, Suresh and
Giannakopoulos [6] established a general methodology for predicting
equibiaxial RS from sharp indentation and introduced a geometric fac-
tor that depends on the sign of RS. Giannakopoulos [7] later studied
the more general case of biaxial RS and how they affect the indentation
load–depth curve. Based on compressive RS evaluated by indentation
tests and X-ray diffraction, Atar et al. [8] found that the shape factor in
thin ceramic films is approximately unity. In a combined numerical
and experimental study, Xu and Li [9] assessed the influence of biaxial
RS on the unloading behavior and observed that there is a correlation
between RS and hardness. However, they did not provide a model
that relates RS to indentation parameters. Carlsson and Larsson [10,
11] suggested replacing the yield stress by a combination of yield stress
and RS to better agree with numerical and experimental results, yet
missed out on presenting a model for general RS.

Using spherical indenters, Taljat and Pharr [12] proposed exploiting
the influence of RS on the elastic–plastic transition. Swadener et al. [13]
noted that spherical indentersmay exhibit higher sensitivity of indenta-
tion properties to RS than Berkovich indenters. Their experimental
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Fig. 1. Quarter FE model for Knoop indentation.
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technique does not require imaging of the indent, but is restricted to
equi-biaxial RS. Recently, Lu et al. [14] used the relative change in load-
ing curvature to measure equibiaxial RS by conical indentation. Assum-
ing elastic-perfectly plastic material behavior, Zhao et al. [15] and then
Chen et al. [16] found a relationship between RS and material parame-
ters by FE analysis and proposed a method that allows simultaneous
determination of uniaxial or equibiaxial RS, yield strength and Young's
modulus without requiring the contact area.
Fig. 2. Normalized P–h curves using rigid, diamond and WC indenters for σR/σo and 1.

Fig. 3. Normalized P–h curves with μ = 0.0, 0.3 and 0.5 (RS-free and σR = ±σo).
Jang et al. [17] decomposed the RS into mean stress and deviatoric
stress and concluded that among them only the deviatoric stress com-
ponent in indentation direction affects the plastic deformation. Lee
and Kwon [18] developed a stress-relaxation model and exploited the
load difference between indentation on specimens with and without
RS. The method relies on the impression size. However, differences in
(the amount of) sink-in due to RSmaymake it difficult to obtain compa-
rable contact areas, which may further deviate from the contact area
inferred from contact stiffness. Based on this, Lee and Kwon [19]
suggested a method for evaluating tensile and compressive non-
equibiaxial RS from Vickers indentation by using the contact area
(derived from contact stiffness) and the indentation load. The RS ratio
can however not be obtained by this technique. Based on the direction-
ality factor proposed by Lee and Kwon [18,19], Han et al. [20] and
Choi et al. [21] noted the advantage of the Knoop indenter over other
standardized indenters for non-equibiaxial RS evaluation, for the
load–depth curve is now sensitive to the orientation of the indenter.
An analytical model for tensile RS was provided that accounts for the
different contributions of the non-equal RS to the corresponding load
differences between stressed and unstressed material. Although the
approach was in a good agreement with experiments on steel, the
possible influence of material properties was not discussed. To obtain
non-equibiaxial RS from the load–depth curve, Lee et al. [22] developed
a conical indentation-based approach, but which requires pre-
knowledge of the RS ratio. Groth andMann [23] exploited the reduction
of the short diagonal of the Knoop impression (due to elastic recovery
Fig. 4. Normalized P–h curves from FE analysis (circles) and based on regressed Kick's law
coefficient (solid line).



Fig. 5. Determination of C0° and C90° from P–h curves obtained by 2 Knoop indentations.
Fig. 7. β vs. α for diverse σR2/σo (εo = 0.002, n= 10): β is hardly affected by σR2/σo for a
certain α.
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during unloading) to estimate RS. Their approach is yet limited to
metals which show sufficient recovery, i.e., metals with low hardness-
to-Young's modulus ratios.

In conclusion, amethod for determining non-equibiaxial RS from in-
dentation which takes into account the influence of material properties
and which does not require the contact area (or contact stiffness) has
not been developed yet. In this study, relying on finite element (FE)
analysis we develop such an approach by investigating in detail the re-
lation between Kick's law coefficient and elastic RS for a large range of
materials characterized by their yield strain and hardening exponent.
The sensitivity of Kick's law coefficient to the orientation of the Knoop
indenter with respect to the RS is related to the RS ratio. Finally the
method is validated by comparison with experiments on elastically
bended cross-shaped specimens.
Fig. 6. Changes of C0°/Co and C90°/Co with α for n = 2, ∞ (εo = 0.002, 0.010); the case of n
2. FE model for Knoop indentation and material model

All numerical analyses are performed using the commercial FE soft-
ware Abaqus/Standard. The quarter FE model used for obtaining the
Kick's law coefficient, shown in Fig. 1, is composed of 110,000 8-node
brick elements (C3D8). The bottom surface nodes are fixed in
3-direction, whereas nodes on the outer surfaces are constrained in
direction normal to the surface they lie in. Biaxial RS are imposed by
Abaqus' initial condition option. The model size is chosen so that influ-
ences from the boundaries become negligible. Throughout this study,
the maximum indentation depth is set to hmax = 0.2 mm, or 8 times
the edge length e of an element of the innermost region. Thismesh den-
sity is found to be sufficient because refining themesh so that hmax=12
e did not result in a change of the load-depth curve.
egative α will not be treated in the remainder of this paper and is therefore hatched.



Fig. 8. β vs. α for n = 2, ∞ and εo = 0.002, 0.01.
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The material is assumed to show Mises elastoplastic material
behavior and permitted to undergo isotropic strain hardening. The
stress–strain (σ–ε) relation is expressed by a piecewise power law
(Hollomon-type stress–strain relation), which distinguishes between
elastic and plastic regimes

ε
εo

¼
σ
σo

for σ ≤ σo

σ
σo

� �n

for σ N σo ; 1 b n b∞

8>><
>>: : ð1Þ

Here n, ε and εo (≡σo/E) are strain hardening exponent, total strain
and yield strain, respectively. σo and E denote initial yield stress and
Fig. 9. Deviation (β1.0 − β0.5) / (β1.0 + β0.5) from the assumption that β is not influ
elastic modulus. Since E and σo of the indenter are usually much larger
than those of the specimen, modeling is simplified by assuming a rigid
indenter. This assumption can be justified by examining the indentation
load–displacement (P–h) curves obtained with a rigid indenter
and indenters made of common indenter materials, namely WC
(E = 537 GPa, ν = 0.23) and diamond (E = 1140 GPa, ν = 0.07).
The resulting load–displacement curves for the RS-free (σR/σo = 0)
and the equibiaxial RS (σR/σo = 1) cases nearly coincide, as can be
seen in Fig. 2 for a material with E = 200 GPa, ν = 0.3, εo = 0.002
and n = 10; the maximum deviation of 1% in the maximum indenta-
tion load may be neglected in light of the reduced computational
costs. Friction between the Knoop indenter and the material surface is
considered with Coulomb friction coefficient μ = 0.3. Friction has
enced by the magnitude σR2/σo for a given α, for tensile and compressive RS.



Table 1
Material properties from spherical indentation test.

Specimen Number Maximum load [N] E [GPa] σo [MPa] n

SS400 specimen 1 861 210 244 6.57
2 863 199 231 5.98
3 862 181 271 7.43
4 859 215 220 5.86
5 855 211 194 5.05
Avg. 860 207 232 6.14

SM45C specimen 1 1194 199 298 4.87
2 1196 190 309 5.01
3 1200 184 359 5.93
4 1194 190 315 5.09
5 1200 204 353 6.02
Avg. 1197 193 326 5.34

Table 2
Applied stresses via strain gauge and RS from indentation test.

Material Strain gauge
[MPa]

Indentation
[MPa]

Error in
σR1 [%]

Error in
σR2 [%]

Error in
α [%]

σR1 σR2 σR1 σR2

SS400 136 103 130 105 4.4 −1.9 −6.6
103 87 101 89 1.5 −2.3 −4.3
103 0 118 12 −14.6 – –

SM45C 136 136 141 142 −3.7 −4.4 −0.7
150 149 −10.3 −9.6 0.7

136 119 145 129 −6.6 −8.4 −1.7
122 105 10.3 11.8 1.6

127 97 126 104 0.8 −7.2 −8.1
97 78 82 69 15.5 11.5 −4.6
97 0 106 11 −9.3 – –
84 62 97 70 −15.5 −12.9 2.2

87 64 −3.6 −3.2 0.3
83 61 2.1 2.1 0.4

62 50 56 45 12.4 8.8 0.4
55 44 19.7 11.8 0.8
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however a negligible effect on the load–depth curves, regardless of
magnitude and sign of RS and material properties (Fig. 3); the error in
the maximum load lies well below 1%. Fig. 3 indicates that apart from
the load the final depth is affected by the RS; compressive RS support
the recovery of the impression while tensile RS lead to an increase in
the final depth. The relative change is however lower than the relative
change in maximum loads; further, accurate measurement of the im-
pression size is rather problematic.

The load–displacement (P–h) curve for sharp indentation follows
Kick's law

P ¼ Ch2
: ð2Þ

A change in themaximum indentation load,ΔP, due to the presence of
RS results in a proportional change of Kick's law coefficient, ΔC= ΔP/h2.
The Kick's law coefficient C is used as indentation variable because the
effect of unavoidable tip rounding on C can be readily accounted for, as
outlined in Lee et al. [24]. C depends on material properties; yet, if C is
Table 3
Coefficients for Eq. (7).

i = 1

j = 0 j = 1 j =

fα
+ k = 0 1.359E+0 −1.471E+0 −2.

k = 1 −7.412E+1 3.646E+2 −6.
k = 2 3.516E+3 5.833E+2 −8.

fα
− k = 0 −2.981E+0 9.885E+0 −1.

k = 1 5.300E+2 −9.606E+2 1.
k = 2 −2.580E+4 2.453E+4 −7.
normalized by E, the ratio C/E can be taken as a representative value
for materials which have equal εo and n (i.e., every combination of εo
and n yields a unique C value). Throughout this study, we assume
E = 200 GPa; however, our suggested method will be applicable to
other values of E because the key parameter is εo, not the absolute
values of E or σo [25]. While Poisson's ratio is set to ν=0.3, yield strain
and hardening exponent are varied within the range εo = [0.001, 0.01]
and n = [2, ∞], so that the range of common metals is covered.

The Kick's law coefficient is obtained by fitting load–depth data to
Eq. (2). Since load–displacement data at very low indentation depths
may be inaccurate in real indentation due to tip rounding, only data be-
tween 0.5 hmax and hmax are considered. The FE load–depth curve is in
an excellent agreement with the load–depth curve based on the Kick's
law coefficient from regression, as we can see in Fig. 4 for σR1 = 0 and
σR2 = σo. By contrast with conical indentation, Knoop indentations
with the major indenter axis aligned with (1) the minor absolute
principal RS σR1 (orientation angle θ = 0°) and (2) the major absolute
principal RS σR2 (|σR2| N |σR1|) (θ=90°) deliver two non-equal C values,
denoted by the extrema C0° and C90° (Fig. 5). Due to the large aspect
ratio of the Knoop indenter, C is quite sensitive to θ, thereby making
the indenter a predestined tool for evaluating arbitrary RS. Obviously,
the sensitivity of the difference in C could be maximized by increasing
the aspect ratio, but this would result in a very sharp, wedge-like
indenter. Due to its wide availability, the standard Knoop indenter is
the preferred tool here.

3. FE results and observations

We denote the Kick's law coefficient of the virgin (i.e., RS-free)
material by Co and the RS ratio by α ≡ σR1/σR2 (−1 ≤ α ≤ 1). Values of
C0°/Co and C90°/Co are plotted against α for σR2/σo = ±0.5 (Fig. 6). The
case of negative α (i.e., mixed positive and negative RS) will not be
treated any further after this paragraph; nevertheless we add the case
of mixed RS to Fig. 6 because we think that this may be of interest for
future studies. Fig. 6 reveals that both σR1 and σR2 contribute to the dif-
ference in C between RS-free and stressed specimens, although the RS
component normal to the median plane through the major indenter
diagonal causes a higher change. In particular for compressive RS,
where the RS effect is less pronounced, the difference between C0° and
C90° can be rather small. However noting that load–displacement
data can be obtained very accurately and reliably from indentation
tests, even relatively small differences are sufficient. Further, as we
will see later, we are interested in the differences (Co − C0°)/Co and
(Co− C90°)/Co. For non-negative α, the following qualitative statements
can be deduced from Fig. 6; firstly, if both C0° and C90° are below Co, RS
must be tensile, i.e., σR1, σR2 N 0, whereas if they are above Co, RS must
be compressive, i.e.,σR1, σR2 b 0. This is because tensile RSmake it easier
for the indenter to penetrate the material since they support the mate-
rial flow away from the center, whereas compressive RS work against
the indentation. Consequently, indentation on a material under com-
pressive RS requires a higher load and thus yields a higher C value. Pro-
vided Co is known, we can thus by only one indentation ascertain
whether RS are tensile or compressive, which means that the two
cases can be treated independently. Secondly, if C0° b C90° then
i = 2

2 j = 0 j = 1 j = 2

904E+0 3.738E−1 1.857E+0 1.146E+0
716E+2 −9.962E−1 −4.591E+2 8.087E+2
384E+3 1.045E+3 1.491E+4 −1.173E+4
064E+1 3.355E+0 −6.699E+0 7.814E+0
366E+2 −3.891E+2 4.614E+2 1.602E+2
428E+4 1.837E+4 5.016E+3 2.426E+4



Fig. 10. Deviation of α calculated by Eq. (7), “Fit α”, from FE input values.
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σR1 b σR2. Thirdly, the higher the gap between mean average
(C0° + C90°) / 2 and Co, the higher is the absolute sum of RS, |σR1 + σR2|.

Generally, although this cannot be seen directly from Fig. 6, where
C – either C0° or C90° – is normalized by Co, a decrease in n (pronounced
hardening) or an increase in εo lead to an increase in C. Raising themag-
nitude of compressive RS results in an increase in C, whereas raising the
magnitude of tensile RS leads to a decrease in C. For the range of mate-
rials chosen in this study, the maximum C is consequently obtained for
the case “maximum α (=1, equibiaxial RS), minimum σR2/σo (=−1),
minimum n (=2) and maximum εo (=0.01)”. However, the ratio C/Co
becomes maximum for α = 1, n = ∞ and εo = 0.01.
Fig. 11. Deviation of FE results from Eq. (8).
Applying the Buckingham Pi theorem, the Kick's law coefficient for
the RS-free case can be expressed in terms of material properties as

Co

E
¼ Πo v; εo;nð Þ: ð3Þ

As compared with the RS-free case, additional terms enter the
expressions for C0° and C90°. We may write

C0�

σo
¼ g0� ν; εo;n;α;

σR2

σo

� �
C90�

σo
¼ g90� ν; εo;n;α;

σR2

σo

� �
:

ð4Þ

Based on the statements made in Section 3, we define two dimen-
sionless variables

β≡
Co−C90�

Co−C0�

χ≡
1
2

Co−C0�

Co
þ Co−C90�

Co

� �
¼ Co− C0� þ C90�ð Þ=2

Co

ð5Þ

where β is to represent the ratio α = σR1/σR2 and χ is to represent the
normalized sum of RS, i.e., (σR1 + σR2)/σo. The variables are chosen so
that both β and χ rise monotonically with α and (σR1 + σR2)/σo,
respectively. Further, 0 b β ≤ 1, and χ N 0 for tensile RS and χ b 0 for
compressive RS. Note that for very low RS, β becomes quite sensitive
to inaccuracies in C values because numerator and denominator
approach zero. Thus one must be cautious in using Eq. (5) when all
three C values are very close to each other. We will get back to this
issue at the end of Section 4.4.

β values are plotted against α (0 ≤ α ≤ 1) for σR2/σo =±0.25, ±0.5,
±0.75 and±1.0 in Fig. 7 (εo= 0.002, n=10). The curves for tensile RS
nearly coincide as well as the curves for compressive RS, which means
that β is hardly affected by σR2/σo for a given α. As can be seen in



Fig. 12. Analytical model: displayed is the configuration for obtaining C0°; for obtaining C90° the indenter is rotated by 90° about the loading axis [top view] (all forces are in-plane forces).
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Fig. 8 for combinations of minimum andmaximum εo and n values, this
holds approximately for other materials, too; the deviation of β for σR2/
σo = 1.0 (β1.0) from the mean average of β values obtained with σR2/
σo = 0.5 (β0.5) and 1, i.e., (β1.0 − β0.5) / (β1.0 + β0.5), is below 3% for
the whole range of materials (Fig. 9). The fact that the curves for higher
σR2/σo lie almost always above thosewith lowerσR2/σo (Fig. 7, Fig. 8), in
other words, that the deviation in Fig. 9 is mainly negative, and the fact
that the deviation increaseswith decreasingα indicate that the assump-
tion thatβ be not affected byσR2/σo for a givenαmaynot be strictly cor-
rect, at least not for tensile RS; yet the deviation over thewhole range of
elastic RS is very small in light of the simplification it entails. Further, al-
though for high-hardening materials (low n) the curves for tensile and
compressive RS nearly coincide, Fig. 7 and Fig. 8 support the proposition
that tensile and compressive RS cases are fundamentally different — as
the theoreticalmodel by Suresh andGiannakopoulos [6] and the discus-
sions by Carlsson and Larsson [10,11], Huber and Heerens [26], Larsson
[27] revealed. The tensile RS curves are nearly straight regardless of εo
and n, while the ones for compressive RS change from approximately
straight to curved with increasing εo and n. The observation made for
tensile RS is in agreementwithHan et al. [20], who conductedKnoop in-
dentation tests on API X65 steel specimens. The load difference ratio
(equivalent to β) for α = 0 (tensile RS), which they reported to be
0.34 for API X65, however is material-dependent.
Fig. 13. FE results for Co/E assuming diverse combinations of εo and n.
4. Determination of residual stresses

4.1. Residual stress ratio

Assuming that the small influence of σR2/σo on β for a certain α can
be disregarded forα ≥ 0,we can directly determineα fromβ for a certain
combination of εo and n, independent of σR1/σo and σR2/σo, which facil-
itates the establishment of mapping functions significantly. Neglecting
further the effect of Poisson's ratio, which has been set to ν = 0.3, and
using dimensional analysis, we can write

α ¼ fþα β; εo;nð Þ for C0� ;C90� b Co tensile RSð Þ
α ¼ f−α β; εo;nð Þ for C0� ;C90� N Co compressive RSð Þ : ð6Þ

For the fitting functions fα
+ and fα

−, a 2nd degree polynomial
function of the form

α ¼ 1þ Ai εo;nð Þ 1−βi
� �

Ai εo;nð Þ ¼ Bi j εoð Þ n− j

Bi j εoð Þ ¼ Ci jkεok ; i ¼ 1; 2 ; j; k ¼ 0; 1; 2

ð7Þ

gives a sufficiently accurate fit to the FE data. Note that the transition
between fi

− and fi
+ is continuous, but not the transition between their

derivatives. Coefficients for fα+ and fα
− are provided in Table 3. Only

for the smallest yield strain, εo = 0.001, the deviation is somewhat
higher (Fig. 10). However, the sensitivity of C to RS is rather low here
(especially in combination with a high n), making the approach less ap-
propriate for these materials.

Lee et al. [22] found for conical indentation that the maximum load
(or C) for indentation on a specimen with σR1 and σR2 is equal to the
mean average of the maximum loads (or C) from two indentations
(same depth) on specimens with equibiaxial RS σRI = σR1 and
σRII = σR2. Assuming that this holds also for Knoop indentation, we
can write in terms of Kick's law coefficients in a similar fashion

C0� þ C90� ¼ CRI þ CRII ↔ χ ¼ Co− C0� þ C90�ð Þ=2
Co

¼ Co− CRI þ CRIIð Þ=2
Co

ð8Þ
Table 4
Coefficients for Eq. (14).

bij j = 0 j = 1 j = 2 j = 3

i = 0 0.000E+0 2.636E+2 −1.768E+4 6.503E+5
i = 1 1.853E−1 4.486E+2 −5.143E+4 2.181E+6
i = 2 2.552E+0 −6.464E+1 −1.881E+4 1.139E+6



Fig. 14. Change of Co/E with εo and n; solid lines are the corresponding fitting curves (Eq. (14)).

Fig. 15.Comparison of Co/E obtained by Eq. (14), “FitCo/E”, with FE results for 30materials.
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where CRI and CRII denote the Kick's law coefficients obtained
from indentations on a specimen subject to equibiaxial RS σRI and
on a specimen subject to equibiaxial RS σRII. Comparison of
(C0° + C90°) / (2E) with corresponding (CRI + CRII) / (2E) values for
α = 0, 0.25, 0.5 and 0.75 and σR2/σo = ±1 (8 combinations × 30
materials = 240 data) shows that Eq. (8) indeed holds for Knoop in-
dentation (Fig. 11). The small error (maximum error b2%, average
error = 0.5%) is not systematic and therefore probably due to nu-
merical inaccuracies. This means that RS can be obtained by finding
Fig. 16. Change of χ with εo a
virtual Kick's law coefficients CR1 and CR2 that yield the same α.
This conversion is very convenient because the function for the
equibiaxial RS case requires one fewer variable than Eq. (4), for α is
known to be 1.

As the concept applies to conical and Knoop indenters, we may
expect it to be applicable to any sharp indenter. A simple analytical
model can be established that corroborates the numerical finding
(Fig. 12). All forces in Fig. 12 act in-plane and all indentations are per-
formed to equal hmax. Aswe have concluded from the discussion regard-
ing Fig. 6, both RS contribute to the change in C0° and C90°with respect to
Co. We expect, in light of self-similarity, that the in-plane force Pm, as
shown in Fig. 12, scales with the applied load, Pmax, i.e.,

Pm ¼ k Pmax ð9Þ

where the proportionality factor k depends on the indenter shape –
represented through the indenter angle(s) φ; for the Knoop indenter
φ1=86.25° andφ2=65°– only. Similarly, thedifference in Pm between
the RS-free and the RS cases scales with the corresponding indentation
load difference, i.e., ΔPm = k ΔPmax. Further, the change in pile-up/sink-
in behavior due to RS is neglected so that A1/A2 = const., where A1 and
A2 are the normal cross-sections through theminor and major indenter
diagonals, respectively (Fig. 12).

For the general biaxial case, the absolute differences in loads neces-
sary for indentations to hmax (with respect to the RS-free case, denoted
by the superscript ‘o’) can be written as

ΔP0�
m ¼ P0�

m−Po
m ¼ σR1A1 sinω þ σR2A2 cosω → ΔP0�

max ¼ κ1σR1 þ κ2σR2

ΔP90�
m ¼ P90�

m −Po
m ¼ σR2A1 sinω þ σR1A2 cosω → ΔP90�

max ¼ κ1σR2 þ κ2σR1

ð10Þ
nd σR/σo for n = 2, 5, ∞.



Table 5
Coefficients for Eq. (15).

i = 1 i = 2

j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

fR
+ k = 0 2.242E+0 7.442E+0 2.926E+0 −1.622E+0 −9.724E+0 −2.169E+1

k = 1 6.780E−3 −8.627E−3 4.075E−2 4.427E−3 3.384E−3 −1.122E−1
k = 2 3.517E−6 −5.769E−6 −1.149E−5 −3.767E−5 7.578E−5 −6.798E−5

fR
− k = 0 1.266E+0 8.045E+0 6.129E+0 6.927E+0 −4.828E+1 3.800E+1

k = 1 4.478E−3 −4.014E−4 2.851E−2 −1.443E−1 5.659E−1 −5.533E−1
k = 2 7.755E−6 −4.029E−5 4.185E−5 −1.356E−4 3.637E−4 −2.350E−4
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κ1 = A1 sinω/k and κ2 = A2 cosω/k depend on the indenter shape only
(tanω = tanφ2/tanφ1). For the two equi-biaxial cases (I: σRI = σR1; II:
σRII = σR2), we get

ΔPI
m ¼ σRI A1 sinω þ A2 cosωð Þ → ΔPI

max ¼ κ1 þ κ2ð ÞσRI

ΔPII
m ¼ σRII A1 sinω þ A2 cosωð Þ → ΔPII

max ¼ κ1 þ κ2ð ÞσRII
: ð11Þ

Summing up the cases {0°, 90°} and {I, II} and comparing them leads
to

ΔP0�
max þ ΔP90�

max ¼ κ1 σR1 þ σR2ð Þ þ κ2 σR1 þ σR2ð Þ
ΔPI

max þ ΔPII
max ¼ κ1 þ κ2ð ÞσRI þ κ1 þ κ2ð ÞσRII

)
→ΔP0�

max

þ ΔP90�
max

¼ ΔPI
max þ ΔPII

max

ð12Þ

or in terms of Kick's law coefficient

ΔC0� þ ΔC90� ¼ ΔCRI þ ΔCRII ð13Þ

which is equal to Eq. (8).
Fig. 17. Deviation of fitted σR/σo value
4.2. Estimation of Co from material properties

If an RS-free specimen is not available, the Kick's law coefficient for
the RS-free case can be estimated from material properties. FE results
for Co/E, depicted in Fig. 13, give a monotonic increase with ε o and
1/n. This is in accordance with the fact that the resistance to plastic de-
formation (i.e., hardness) increases with yield strength and 1/n (which
means a steeper increase of the actual yield stress with plastic strain).
Data can be fitted to the following polynomial, which is quadratic in
1/n and cubic in εo,

Co

E
¼ f o εo;nð Þ ¼ Di εoð Þn−i

Di εoð Þ ¼ Fi jεo j ; i ¼ 0; 1; 2 : j ¼ 0; 1; 2; 3; Foo ¼ 0:
ð14Þ

Coefficients are evaluated byminimizing the sumof squared relative
errors. The boundary condition Foo = 0 is added to account for the ex-
treme, though fictitious case of a perfectly plastic material with zero-
yield strain. Values for Fij, based on the data for ε o = 0.001, 0.002,
0.003, 0.005, 0.007, 0.01; n = 2, 3, 5, 10, ∞ (30 analyses), are given in
Table 4. The fitting functions capture the change of Co/E with material
s from FE input values for σR/σo.



Fig. 18. Algorithm for determination of RS.
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properties very well (Fig. 14). Fit Co/E obtained by Eq. (14) are plotted
against FE results in Fig. 15. Themaximumdeviation is 2.5%; the average
deviation is 0.5%. However, since β and χ are quite sensitive to inaccu-
racies in Co, it is generally better to obtain Co together with C0° and
C90° using the same experimental set-up.

4.3. The equibiaxial residual stress case (α = 1)

For the equibiaxial RS case, χ = (Co − CR)/Co where CR denotes the
Kick's law coefficient obtained from indentation on a specimen subject
to equibiaxial RS σR. As we can observe in Fig. 16, χ becomes more
and more sensitive to σR/σo with increasing εo and n — as much as
CR/Co becomes sensitive (as discussed in Section 3). For ε o = 0.001
and n = 2, χ lies between −0.06 (σR = −σo) and 0.08 (σR = σo),
while for ε o = 0.01 and n = ∞, χ ranges between −0.23 (σR = −σo)
and 0.43 (σR = σo). Invoking the fundamental difference between
the tensile and compressive RS cases, we establish separate mapping
functions. Noting that for all combinations of n and εo, σR/σo increases
monotonically with χ, we propose the following fitting function

σR

σo
¼ fþ=−

R χ; εo;nð Þ ¼ Gþ=−
i εo;nð Þ χi i ¼ 1; 2

Gþ=−
i εo;nð Þ ¼ Hþ=−

i j εoð Þ n− j j ¼ 0; 1; 2

Hþ=−
i j nð Þ ¼ Jþ=−

i jk εo−k k ¼ 0; 1; 2 :

ð15Þ

The plus and minus superscripts denote functions for tensile and
compressive RS, respectively. The fitting coefficients for fR+/−, listed in
Table 5, are evaluated based on data for σR/σo = ±0.25, ±0.5, ±0.75,
±1.0; εo = 0.001, 0.002, 0.003, 0.005, 0.007, 0.01; n = 2, 3, 5, 10, ∞
(240 analyses). The fitting functions fR+/− describe the material behav-
ior accurately (Fig. 17).

4.4. The biaxial residual stress case (0 ≤ α ≤ 1)

Having relatedβ toα andχ toσR, we can determine biaxial RS as fol-
lows. Material properties E, σo and n are assumed to be known. They
may be determined by indentation – e.g., the spherical indentation tech-
nique by Lee et al. [28] or the dual indenter technique proposed
by Chollacoop et al. [29] – or by fitting uniaxial tensile test data to
Eq. (1). Co is either obtained fromKnoop indentation of an RS-free spec-
imen, or calculated by Eq. (14) if an RS-free specimen is unavailable.
Alternatively, an RS-free state can be established by cutting the
specimen so that a micro-pillar, the height of which should exceed its
diameter, remains [30]. From indentation on this pillar, Co can be
obtained. Though more cumbersome, this method is especially
useful for thin films or coatings. Having determined C0° and C90°
from two Knoop indentations, we compare them with Co to check
whether RS are tensile or compressive. If RS are sufficiently high,
i.e., |χ| ≥ χ* = 0.01 (see below), the stress ratio α is calculated by
Eq. (6). This α value must be equal to the RS ratio σRI/σRII of two virtual
equibiaxial RS cases giving CRI and CRII (Roman numerals are used to
denote reference to the virtual equibiaxial case). The corresponding χ
values, χI and χII, become

χI ¼
Co−CRI

Co
; χII ¼

Co−CRII

Co
¼ 2−

C0� þ C90�

Co
−χI ð16Þ

where we further note that χ is the mean average of χI + χII, i.e., χ =
(χI + χII) / 2. Inserting Eq. (16) into Eq. (15) and noting that χII

depends on χI, we solve

σRI

σRII
−α ¼ fþ=−

R χI; εo;nð Þ
fþ=−
R χII; εo;nð Þ

−α ¼ 0 ð17Þ
for χI. Note that since 2nd degree polynomial functions are used for re-
lating χ to σR/σo, we can directly solve for χI. σR1 is then calculated by
insertingχI into Eq. (15), and σR2 = σR1/α. The algorithm for determin-
ing RS is illustrated in Fig. 18. As above, apart from ε o = 0.001, where
there is some deviation, final results for σR1 and σR2 are in a good agree-
ment with corresponding FE input values (Fig. 19), which shows the
accuracy of the fitting functions.

Some short remark shall be given to the case of very small RS. As
noted above, the definition of β is not suitable when both RS approach
zero, i.e., C0° ≈ C90° ≈ Co, because β becomes increasingly sensitive to
small inaccuracies in C values, especially for materials with low εo and
high n. Nevertheless, in such a case (of very low RS) we can determine
whether RS are tensile or compressive. If we assume that the stress
ratio is not important – for example, when onewants to find the region
of zero RS –, we can make an estimate regarding the magnitude of RS.
Using α = 1 and inserting χ into Eq. (15) delivers an RS value that is
representative of the magnitude of RS. Of course, here the Knoop
indenter has no advantage over other indenters.



Fig. 19. Deviation of fit σR1 and σR2 from corresponding FE input values.
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5. Experimental validation by Knoop indentation tests on bended
specimens

To assess the suggested method, Knoop micro-indentation tests are
performed using a custom-made instrumented micro-indentation
system with a capacity of 500 kgf and a load resolution of 5 gf. The in-
dentation depth resolution of the linear encoder is 0.05 μm. The dis-
placement is controlled by an AC servo actuator with a maximum
torque of 6.5 kgf m. Material properties of structural steel JIS SS400
and carbon steel SM45C – each annealed at 780 °C and subsequently
furnace-cooled to remove RS – are obtained by indentation with WC
spherical indenters (E = 537 GPa) of 1 mm diameter (indentation
Fig. 20. Bending specimen and device for inducing non-
depth 0.2 mm, velocity 0.3 mm/min). The procedure for deriving E
(based on the Oliver–Pharr method; [31,32]), σo and n is explained in
Lee et al. [28]. Indentation load and obtained material properties are
provided in Table 1; Poisson's ratio is ν = 0.3. Excluding upper and
lower outliers, mean average values are taken as material properties.
Both materials lie more or less in the middle of the range of εo and n.
Tensile tests reveal that the stress–strain curves of the two materials
follow the Hollomon-type stress–strain relation in Eq. (1) properly.

Adopting the design of the device proposed by Lee and Kwon [18],
which was similar to the set-up by Tsui et al. [3], we employ a cross-
shaped specimen as depicted in Fig. 20. Biaxial tensile RS are induced
by elastically deflecting the ends of the specimen via an adjustment
equibi-axial RS (following [19]); all lengths in mm.



Fig. 21. RS from Knoop indentation, σKnoop vs. RS from strain gauge (σ ref).
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screw in the jig depicted in Fig. 20. Two strain gauges oriented in 1- and
2-directions are affixed to the specimen's top surface. The elastic strains
are converted to reference stresses σ ref using beam theory. AWC Knoop
indenter penetrates the specimen surface in the center of the testing
area by 50 μm with a velocity of 300 μm/min. The indentation depth
(=0.3% the specimen thickness) is chosen low enough to provide a
quasi-uniform residual stress distribution and high enough that surface
roughness effects on the measurement can be neglected. The load–
depth curves from four subsequent indentations of the RS-free speci-
mens can be considered coincident, which indicates that small differ-
ences in C can be sensed accurately.

From the Kick's law coefficients, we calculate the RS following the
algorithm in Fig. 18 and compare them with the reference bending
stresses σ ref (Table 2, Fig. 21). Note that differences between indenta-
tion results for identical RS cases are at least partly because the indenta-
tion positions within the testing area are not the same. We find quite a
good prediction of the RS ratio, and RS from indentation show an ac-
ceptable agreement with the bending stresses, in particular in light of
the simplicity of the indentation technique.

6. Summary and concluding remarks

In this work, exploiting the asymmetry of the Knoop indenter and
the resulting sensitivity of the Kick's law coefficient to its orientation
with respect to the RS, we presented a method for determining non-
equibiaxial RS from Knoop indentation. The approach bases exclusively
on the changes of minimum and maximum C values with RS and is in-
dependent of the impression size, which may be difficult to determine
accurately. Based on FE analysis results for various biaxial RS combina-
tions and a large range of yield strains and strain hardening exponents,
we could draw the following conclusions.

• FE results supported the argument that tensile and compressive RS
represent fundamentally different cases; the change in C is more pro-
nounced for tensile RS than for compressive RS.

• The RS ratio α can be determined readily from indentation variable β,
independent of the magnitude of RS.

• If α is known, the non-equibiaxial RS with C0° and C90° can be convert-
ed to two virtual equibiaxial RS cases with CRI and CRII. The relations
obtained for the equibiaxial RS case can hence be used for the case
of non-equibiaxial RS.

• If RS-free specimens are unavailable, Co can be estimated from
material properties E, εo and n.
• The approach is in particular suitable for materials with a high yield
strain and low strain hardening because these materials show a
higher sensitivity of χ to σR/σo.

An algorithmwas provided to illustrate the procedure for determin-
ing σR1 and σR2 from C0°, C90° and Co. The method was finally validated
by comparison with results from Knoop indentations on elastically
bended cross-shaped specimens.
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