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Numerical approaches and experimental verification of the conical
indentation techniques for residual stress evaluation
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Conical indentation methods to determine residual stress are proposed by examining the
finite element solutions based on the incremental plasticity theory. We first note that
hardness depends on the magnitude and sign of residual stress and material properties and
can change by up to 20% over a specific range of elastic tensile and compressive residual
stress, although some prior indentation studies reported that hardness is hardly affected by
residual stress. By analyzing the characteristics of conical indentation, we then select
some normalized indentation parameters, which are free from the effect of indenter tip
rounding. Adopting dimensional analysis, we present practical conical indentation
methods for the evaluation of elastic/plastic equi- and nonequi-biaxial residual stresses.
The validity of developed approaches is confirmed by applying them to the experimental
evaluation of four-point bending stress.

I. INTRODUCTION

Residual stresses are formed by diverse processes. The
residual stresses in materials affect the behavior of mate-
rials, including fatigue, fracture, corrosion, abrasion, and
friction. For this reason, various experimental measuring
techniques have been developed, e.g., neutron and x-ray
tilt techniques, strain/curvature measurements, beam
bending, hole drilling, layer removal, and chemical etch-
ing.1,2 Each of these methods, however, has a shortcom-
ing with respect to accuracy, sensitivity, resolution, cost,
specimen preparation, material type, and geometry of
structure. An indentation test is another method that can
evaluate residual stresses. It is nondestructive and easy to
use; moreover, it can be applied to small specimens and
parts in present structural use. To evaluate residual
stresses using an indentation test, it is necessary to secure
the indentation data at the non-residual state.

In the first stage, attention was focused on the varia-
tion of hardness with the direction and magnitude of
residual stresses. Tsui et al.3 and Bolshakov et al.4 inves-
tigated the effects of residual stresses on hardness, con-
tact area, and elastic modulus using experimental work
and finite element analyses (FEA). They showed that
residual stress was not related to material hardness but
closely to the pileup of material. On the assumption that
material hardness is independent of triaxial stress, Suresh
and Giannakopoulos (SG)1 suggested a novel methodol-

ogy to determine surface equi-biaxial residual stress with
sharp indentation, invoking the invariance of contact
pressure (or hardness). For a given residual stress sR,
they assumed the following relation,

Po
max ¼ Pmax þ sR fcA ; ð1Þ

where Pmax and P
o
max are the maximum loads at the same

indentation depth hmax with and without residual stress,
respectively. A is the projected contact area for the mate-
rial with residual stress after unloading (Fig. 1). It should
be noted that although some indentation studies use the
contact area at the maximum load to measure elastic
modulus, hardness, etc., we use the contact area after
unloading because it is the only parameter we can mea-
sure from indentation tests. In addition, the hardness
invariant assumption of the SG method is based on Tsui
et al.’s experimental work.3 They used measured contact
area, which is obviously the area after unloading, and
found that the hardness is almost independent of residual
stress. Therefore, it is sufficiently and more meaningful
to use the area after unloading in this study. Geometric
factor fc in Eq. (1) is 1 for tensile residual stress and sina
for compressive residual stress, where a ¼ p/2 � y as
shown in Fig. 1. Suresh and Giannakopoulos1 introduced
geometric factor since, unlike the tensile residual stress,
compressive residual stress acts counter to the direction
of the indentation load. For Vickers indentation, the geo-
metric factor of SG is around 0.375. By modifying the
SG’s method, Lee and Kwon5 decomposed equi-biaxial
residual stress into mean and deviatoric stresses, and then
they assumed that only the parallel component of
deviatoric stress to the direction of indentation is related
to plastic deformation. The geometric factor fc of Lee and
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Kwon5 is around 0.667. On the other hand, Atar et al.6

illustrated that the geometric factor in ceramic thin films
should be unity by comparing residual stresses from
indentation tests with those determined by x-ray diffraction
(XRD) for compressive residual stress. In fact, it cannot
be physically justified to distinguish between tensile and
compressive residual stresses.

Xu and Li7 investigated the unloading behavior in
nanoindentation under equi-biaxial residual stress state
by finite element (FE) simulations and demonstrated that
the residual stress has a slight effect on the hardness.
However, they did not provide any quantitative expres-
sion of residual stresses in terms of indentation parame-
ters on the basis of their investigation. Chen et al.8

proposed a numerical method to simultaneously deter-
mine elastic modulus, yield strength, and residual stress
through one simple indentation test. They obviously
showed that hardness depends on residual stress. Their
method is useful because it does not require a reference
stress-free material for comparison purposes. However,
they did not mention the effect of strain-hardening expo-
nent to which the method can be very sensitive.

Most of the previously mentioned studies missed out
the effects of material properties, friction coefficient, or
indenter tip radius on the evaluation of residual stress.
The finite tip radius caused by a manufacturing prob-
lem and wear are inevitable. For the same contact area,
if their tip radii are different, the measured indentation
depth varies from one indenter to the other.9 This
causes some trouble in transferring the information
obtained from one indenter to the other with a different
tip radius. Thus, prior studies on the evaluation of resid-
ual stress are not yet fully validated for general materials
and indenters with tip rounding. The present work deals
with these issues, which have been easily ignored in the
previous works, via FE approaches and experimental
verification of conical indentation techniques for residual
stress evaluation.

The paper is organized as follows. In Sec. II, we inves-
tigate the relation between residual stress and indenta-
tion parameters. We present two methods for evaluating

elastic/plastic residual stress based on FE solutions using
the incremental theory of plasticity in Sec. III. From the
actual indentation tests, we measure 4-point linearly var-
ied elastic bending stresses, and discuss the reliability of
the method to evaluate biaxial residual stress in Sec. IV.
Finally, some conclusions are given in Sec. V.

II. FINITE ELEMENT MODELING AND ANALYSIS

A. FE modeling of indentation tests

We performed nonlinear geometry change FE analy-
ses using isotropic elasto–plastic material, which obeys
the J2 flow theory. Considering both loading and geo-
metric symmetry, we used the four-node axisymmetric
element CAX4.10 Our previous work11 revealed that the
eight-node CAX8 element in ABAQUS10 has the prob-
lem of discontinuous equivalent plastic strain at its mid-
node. The lower degree of CAX4 shape function is
supplemented by placing fine elements of which size, e,
is 0.625% of the maximum indention depth at the mate-
rial contact surface. Multipoint constraints (MPC) option
is conveniently used at the transition region where ele-
ment size changes. However, constrained mid-nodes of
MPC tend to give discrete stress and strain values. We
thus adopted trapezoidal elements in the transition region
near the contact surface and used MPC in the transition
region far from the contact surface. The FE model con-
sists of about 18,000 elements. We also placed contact
surfaces on both material and indenter surfaces. Cou-
lomb friction coefficient f is selected as 0.3. Section II.
B deals with the effects of f. Axisymmetric boundary
conditions are imposed on the nodes on the axisymmetric
axis. The rigid conical indenter with a rounded tip moves
down to indent the material specimen with its bottom
fixed. This FE model is basically the same as our previ-
ous work9 except for the rigid indenter in the present
work. Self-similar indenters with an ideally sharp tip
such as a cone, Berkovich and Vickers obey Kick’s law

P ¼ Ch2t .
1,12 The finite tip radius R (>0) inevitable in

reality may defy the self-similarity. However, the effect
of tip radius R on indentation tests can be minimized by
means of appropriate normalized parameters.9 The gap
hg of indentation depth between perfect and rounded tips
is given in the form (Fig. 1)

hg ¼ R
1

sin y
� 1

� �
; ð2Þ

where y is the half-included tip angle of the conical
indenter. In this study, y and R/hmax are fixed as 70.3�
and 2, respectively.

Table I shows the representative material properties of
piecewise power law13 in Eq. (3) used for FE analyses. It
is noteworthy that these values comprehensively cover
the property range of general metals.

FIG. 1. Schematic of sharp indentation profiles considering tip-

rounding effect.
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eo

¼

s
so

for s � so

s
so

 !n
for s > so; 1 < n � 1

;

8>>><
>>>:

ð3Þ

where so is yield strength, eo is yield strain, and n is the
strain-hardening exponent. Total strain et is decomposed
into elastic and plastic strains (et ¼ ee þ ep). To preset
the state of equi-biaxial residual stress in the FE model,
we studied two kinds of methods. One is the initial
boundary condition method done by imposing initial pre-
scribed radial displacements at the outer boundary of the
FE model. The other is the initial stress method done by
using the ABAQUS option.10 To use initial stress option,
the radial displacement at the outer boundary must be
fixed as a zero value. We have confirmed that they pro-
duce identical results. In this work, we use initial stress
option since it is easier than the boundary condition
method in imposing residual stresses on the FE mesh.

B. Effects of Coulomb friction coefficient

The friction force arises from the interaction of the
surface layers of the bodies. The friction coefficient f of
the Coulomb friction model varies with materials and
lubrication. We observe that the friction coefficient does
not change the load–depth (P–ht) curve regardless of
material properties and the sign of residual stress.
Figure 2 shows the effect of friction on hardness H (�
Pmax/A) and contact area A after unloading (Fig. 1) for
various residual stresses. At in Fig. 2(b) means ideal
contact area at loaded state without considering pileup/
sink-in effect, At ¼ p [(hmax þ hg) tany ]

2 (Fig. 1). Unlike
the load–depth curve, hardness is partially affected by
friction coefficient [Fig. 2(a)], especially for materials
with a large strain-hardening exponent. That friction
coefficient changes the contact area [Fig. 2(b)], while it
hardly changes the load. These results are similar to
those of spherical indentation.11,14,15 Because the friction
effect increases with contact area (or pileup) that also
increases with strain-hardening exponent at the same
yield strain eo, the effect of friction coefficient on contact
area [Fig. 2(b)] increases with strain-hardening exponent.

On the assumption that material hardness is indepen-
dent of triaxial stress, SG1 proposed a method evaluating
equi-biaxial residual stress. Their basic Eq. (1) for fc ¼ 1
can be rewritten as

sR ¼ ðPo
max � PmaxÞ

A
: ð4Þ

Figure 3 compares the residual stresses predicted by
Eq. (4) as ðPo

max � PmaxÞ /(Aso) with those given (sR/so)

FIG. 3. Effect of friction coefficients on given sR versus predicted sR

curves.

TABLE I. Material properties used in FE indentation analysis.

Material property Values used in FEA

Young’s modulus E (GPa) 100, 200

Yield strain eo 0.001, 0.002, 0.003, 0.004, 0.006, 0.008, 0.01

Strain-hardening

exponent n

1.5, 2, 3, 5, 7, 10, 20

FIG. 2. Influence of friction coefficients on (a) hardness–residual

stress curves and (b) A/At–residual stress curves.
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for four values of f. Predicted residual stresses vary with
f as Eq. (4) includes indentation contact area. The ten-
dency increases with strain-hardening exponent. Con-
trary to many prior studies using the frictionless contact
condition, however, the deviation of the indentation
parameters between f > 0 and f ¼ 0 is not negligible as
shown in Figs. 2 and 3. Note that the frictional effect is
very small once f > 0.1.

Figure 3 also reveals that the accuracy of residual
stress predicted by Eq. (4) depends on the strain-hardening
exponent. We probe the effect of material properties on
the evaluation of residual stress in Sec. II. C.

C. Verification of prior indentation theories

The variation of hardness with residual stress for vari-
ous material properties is presented in Fig. 4(a). Here, Ho

is hardness under residual stress-free condition. It should
be noted that when the absolute value of a sR is greater
than so in Fig. 4(a), plastic deformation caused by plastic
residual stress pre-exists. Hence, it can be considered that
the comparison with the hardnesses under plastic residual

stress state is meaningless, as shown in Fig. 4(a), since
the reference hardness work-hardened by plastic residual
stress is not the same as that of residual stress-free state,
Ho. It is, however, often unrealistic to measure hardness
after removing residual stress in actual structures, there-
fore it is more practical to set the reference hardness as
the original value under the residual stress-free condi-
tion, regardless of the elastic/plastic residual stress state.
Hence, this comparison will give valuable information
about the difference between elastic and plastic residual
stress states.

It is clarified in Fig. 4(a) that hardness depends on the
residual stress and material properties, even though elas-
tic residual stress state is assumed, while some prior
indentation studies1,3,4 reported and assumed that hard-
ness is hardly affected by residual stress. These prior
studies were limited to a narrow range of materials with
little thought of various materials. Xu and Li7 and Chen
et al.,8 who have used finite element analysis, have found
hardness variation, and especially Chen et al. have obvi-
ously shown that hardness was greatly affected by so/E
ratio for elastic–perfectly plastic materials. In their study,
when sR/so ¼ 1 and so/E¼ 0.01, the hardness decreases
by 20% of reference hardness for an elastic–perfectly
plastic material, and our study shows a similar amount
of hardness drop for a similar condition (sR/so ¼ 1,
so/E ¼ 0.01, and n ¼ 10), as shown in Fig. 4(a). Conse-
quently, significant errors in the predicted value of resid-
ual stress are unavoidable (especially high so/Ematerials)
when we use the formula based on an assumption of
hardness invariance.

In Fig. 4(a), it should also be noted that hardness
can increase with applied tensile residual stress when
sR/so > 1, whereas it always decreases with increasing
elastic tensile residual stress. This is because for a fixed
indentation depth, the contact area continuously decreases
with increasing tensile residual stress regardless of the
magnitude of the tensile residual stress, but the indenta-
tion load, which has also decreased with increasing
applied tensile residual stress, can increase with residual
stress when sR/so > 1. This means that we could not
distinguish plastic residual stress from elastic residual
stress when the indentation load deviation is only consid-
ered; the contact area or other parameters equivalent to
contact area should be included for plastic residual stress
evaluation.

For relatively so/E high ratio (�0.1), even in the elas-
tic compressive residual stress state the turnover of hard-
ness can be found,8 but noting that so/E values of most
metallic materials are smaller than 0.1, in this work we
will not deal with this phenomenon.

Figure 4(b) compares the elastic residual stresses pre-
dicted by Eq. (4) as ðPo

max � PmaxÞ/(Aso) with those
given sR/so for various materials. The figure reveals that
predicted residual stress depends on material properties,

FIG. 4. (a) Normalized hardness H/Ho versus sR/so and (b) sR/so

versus the ratio between load deviation and contact area A computed

using Eq. (4) for various material properties.
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especially the error of predicted residual stress increases
with strain-hardening exponent n. For compressive resid-
ual stress, SG calculated residual stress by Eq. (1) with
fc ¼ sina, but use of sina does not reduce the scattering.
If n ¼ 3 for compressive residual stress in Fig. 4(b) (open
symbols in the ellipse), the geometric factor fc should be
rather unity than sina. This is because SG suggested
Eq. (1) by studying only aluminum 8009 material (eo ¼
0.0043, n � 12).

Another issue with Eq. (4) is that it omits the effects of
variations of contact area. If hardness is independent of
residual stress, contact area at the same indentation load
should not be changed by residual stress. Figure 5 shows
the deformed geometries for a material under three dif-
ferent indentation conditions. Figures 5(a) and 5(b) are
residual stress-free states with different indentation
depths, and Fig. 5(c) is a compressive residual stress
state. Their indentation loads are P1, P2, P3, and contact
areas are A1, A2, A3, respectively. We set the con-
tact areas A2 ¼ A3 > A1 and indentation depths h2 ¼
h3 > h1. If we assume hardness invariance, the hard-
ness of Figs. 5(a)–5(c) should be identical, that is, P2 ¼
P3 > P1. This can be understood to mean that the differ-
ential load (P3 � P1) is exclusively caused by the varia-
tion of A under hardness invariance assumption. SG’s
differential load is, however, produced by hydrostatic
stress, and their theory using the fixed boundary layer
does not express the effect of area deviation. Conse-
quently, Eq. (4) is insufficient to represent the invariance
of hardness and the effect of hydrostatic stress simulta-
neously and, moreover, the hardness invariance assump-
tion is untrue [Fig. 4(a)].

As demonstrated above, both hardness and measured
residual stress by Eq. (4) depend on the magnitude and
sign of residual stress and material properties. It should
be noted that when eo ¼ 0.01 and n ¼ 10, the error of
estimated residual stress is over �30%, whereas the
hardness change is just up to �5%. Even if we decrease
the R/hmax ratio, we obtain the same trend. To explain the
real indentation phenomenon, it needs a new indentation
model, including variation of contact area. The main
reason why hardness looks invariant is that actual mean
indentation depth hm decreases with increasing pileup.
Here, hm is defined as the value of the indented (or
compressed) volume V divided by projected contact area
A. Considering that the ideal volume of cone Vt is At ht/3,

ideal mean indentation depth htm is ht/3. In pileup, the
vertical direction of displacement at the contact edge is
opposite the indentation direction, so actual mean inden-
tation depth is lower than the ideal mean indentation
depth. In sink-in, additional displacement (ht � hc)
occurs where hc is the actual indentation depth (Fig. 1),
so actual mean indentation depth is higher than ideal
depth. We can thus express actual mean indentation
depth hm in the form

hm ¼ ht � 2

3
hc : ð5Þ

In indentation tests, contact area (or actual contact
indentation depth hc) increases with magnitude of com-
pressive residual stress. Load increment due to compres-
sive residual stress and increment of contact area is offset
by load decrement due to decrement in actual mean
indentation depth, and hardness might seem to be hardly
affected by residual stress for specific materials. But
obviously, hardness varies with the magnitude and sign
of residual stress and material properties as shown in
Fig. 4(a) because indentation geometries are quite differ-
ent for the same material with and without residual stress
at the same contact area (Fig. 5). Hence, the assumption
of hardness invariance has no physical basis.

III. NUMERICAL APPROACHES TO EVALUATE
RESIDUAL STRESS

A. A numerical approach using contact area for
evaluation of elastic/plastic residual stress

In Sec. II, we have confirmed that hardness varies
largely with the magnitude and sign of residual stress
and material properties. In this section, a new method to
evaluate elastic/plastic residual stress considering the
effect of material characteristics on residual stress evalu-
ation is proposed on the basis of FEA solutions.
Xu and Li7 showed that the relationship between A/At

and sR/so depends on material properties. Here, A is
actual projected contact area and At is ideal contact area
(Fig. 1), and sR/so is the residual stress normalized by
yield strength. As explained in Sec. I, we use the contact
area after unloading in this study. Figure 6(a) demon-
strates that the ratio A/At is a meaningful parameter
in the evaluation of residual stress by indentation. The
ratio of predicted stress to imposed residual stress

FIG. 5. The geometries for three indentation conditions with different indentation depth and residual stress.
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[ðPo
max � PmaxÞ/(AsR)] is not unity, except for A/At = 0.9

region, and increases with decreasing A/At. Pileup/sink-
in changes contact area, mean indentation depth, and
subindenter constraint in a rather consistent manner,

except for the material with yield strain eo ¼ 0.01 and
strain-hardening exponent n ¼ 3 in Fig. 6(a) (open tri-
angles in the ellipse).

Suresh and Giannakopoulos1 claimed that hardness is
almost independent of residual stress if the elastic strains
are much smaller than the plastic strains (eo < 0.007).
Provided that the elastic deformation of material is inde-
pendent of residual stress,1 the ratio of plastic strain to
total strain plays an essential role in exact residual stress
evaluation for a wide range of materials. Hence, plastic
indentation depth hp after unloading, which can be
obtained from the indentation load–depth curve, is
another meaningful parameter. Figure 6(b) reveals that
the parameter with the depth ratio (hmax/hp) gives a nar-
row band for all materials, including the material with
large elastic recovery (eo ¼ 0.01 and n ¼ 3). With the
solid line [¼ f (A/At)], which is the third order polyno-
mial regression of the data in Fig. 6(b), we express resid-
ual stress in the form:

sR ¼ ðPo
max � PmaxÞhmax

Ahp f ðA=AtÞ : ð6Þ

Equation (6) provides residual stress with an average
and maximum error of less than 5% and 25%, respec-
tively, for all kinds of metal [Fig. 6(c)]. To use this
method, we must measure contact areas A after unloading
and At (or R).

B. A numerical approach using material properties
for evaluation of elastic residual stress

Equation (6) using load, depth, and contact area to
evaluate equi-biaxial residual stresses has a somewhat
limited practicality because it requires measuring or pre-
dicting the projected contact area A after unloading.
Material properties can be known or obtained from the
test such as spherical indentation.11,15 In such a case, we
can estimate elastic residual stress in a rather simple way
without using contact area A since the effects of pileup/
sink-in can be merged into material properties.11

Kick’s law gives the relationship of load–depth curve:

P ¼ Cðht þ hgÞ2 : ð7Þ
The gap of indentation depth between perfect and

rounded tips hg is given as in Eq. (2). The tip radius R
invalidates Eq. (7) at the initial stage of indentation, but
the validity increases with indentation depth ht. Lee et al.

9

have shown that C converges if hmin/hmax > 0.5 where
hmin is the lower limit depth of the regression. Use of
C instead of P allows us to be free from the tip-radius
effect. Another conceivable advantage of Eq. (7) is that it
can also additively include the effect of initial penetration
depth hi due to the initial contact force needed to make
actual contact initially.16 Kick’s law, including initial

FIG. 6. (a) Normalized indentation parameter ðPo
max � PmaxÞ=AsR

versus the ratio between actual and ideal indentation area A/At and

(b) normalized indentation parameter considering elastic recovery

ðPo
max � PmaxÞhmax=hpAsR versus the ratio between actual and ideal

indentation area A/At. (c) Imposed residual stress versus predicted

residual stress considering elastic recovery and ideal contact area A
for various material properties.
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penetration depth hi (> 0), can be expressed in its final
modified form:

P ¼ Cðht þ hg þ hiÞ2 : ð8Þ
In the present FEA work, initial penetration depth hi¼ 0,

therefore we use Eq. (7). In actual indentation tests,
Eq. (8) is more appropriate.

Considering that C has the dimension of stress, we
suggest this formula for equi-biaxial residual stress:

sR

so

¼ f
Co � C

so

; eo; n
� �

; ð9Þ

where semimaterial constant Co for residual stress-free
state and constant C for nonzero residual stress state can
be obtained from the regression of load–depth curve
between 0.5hmax and hmax. We performed FE analyses
of a total of 245 cases (residual stress: 5 	 yield strain:
7 	 strain-hardening exponent: 7), and obtained the
values of regression constant C of Eq. (7) for 245 cases.
The FE solutions can be expressed with the following
polynomial formula:

sR

so

¼ f sR

i ðeo; nÞ Co � C

so

� �i
; ð10Þ

f sR

i ðeo; nÞ ¼ aijðeoÞn�j; i ¼ 1; 2; j ¼ 0; 1; 2; 3; 4 ;

aijðeoÞ ¼ bijke
k
o; k ¼ 0; 1; 2; 3ðAppendixÞ :

The values of coefficients of Eq. (10) are given in the
Appendix (Table AI).
Figure 7 compares predicted residual stresses with real

residual stresses for various material properties. Equation
(10) provides residual stress with an average error of less
than 3% for all kinds of metal. This approach is truly
convenient when material properties can be readily
obtained in advance because it does not measure actual
contact area A. We confirmed that Eq. (10) is also valid
for other low ratios of R/hmax (0.5 and 1) and a deform-
able diamond indenter (E ¼ 1000 GPa and n ¼ 0.1).
For additional convenience, on the assumption that

material can be described well with two parameter
fitting, we expressed the values of Co for residual stress-
free state as a function of material properties as follows:

Co

E
¼ f Ci ðeoÞn�i ; ð11Þ

f Ci ðeoÞ ¼ gije
j
o; i ¼ 0; 1; 2; 3j ¼ 0; 1; 2; 3ðAppendixÞ :

The values of coefficients of Eq. (11) are given in the
Appendix (Table AII). In a case where the stress–strain
curve can be well expressed by the power law fitting,
Eq. (11) makes Eq. (10) simple and useful to evaluate
equi-biaxial residual stress since a reference stress-free
material as measuring Co is not required.
Note that by using no load P but the coefficient C, we

can suppress numerous errors caused by friction and tip
radius. As shown in Sec. II. B, the friction coefficient

FIG. 7. Comparison of residual stress versus indentation parameter for (a) eo ¼ 0.001, (b) 0.002, (c) 0.004, and (d) 0.01.
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hardly changes the indentation load (and C) while it
changes the contact area. Furthermore, as we simply use
the deviation of coefficients C, the frictional effect is
almost self-eliminated. It is important to reduce tip-
radius effect by using regression forms of Eqs. (7) and
(8), because it means we can drastically reduce the max-
imum indentation load (or depth) for a given indenter tip
without measuring its radius, and therefore can easily
increase indentation points to improve the resolution of
residual stress distribution.

C. Estimation of general elastic biaxial residual
stresses using material properties

Residual stress states are not generally equi-biaxial. In
such cases, it is hard to evaluate general nonequi-biaxial
residual stresses by conical, Berkovich, Vickers, and
spherical indenters because we cannot observe the differ-
ence of the load–depth curves, regardless of the align-
ment of orientations between indenter and specimen. On
the presumption that the ratio of biaxial residual stresses
is known, Lee and Kwon5 suggested a method to evalu-
ate general biaxial residual stresses with sharp indenters
by the relation:

sR2 ¼ 3ðPo
max � PmaxÞ
ð1þ kÞA ; ð12Þ

where k is the ratio of biaxial residual stresses, sR1/sR2.
The relation is useful when either uniaxial residual stress
state is assumed or the ratio of biaxial residual stresses is
known, but Eq. (12) is also inherently based on SG’s
method. It should be noted that the residual stress incre-
ment is generally not proportional to the load decrement,
as demonstrated by the above FEA solutions for various
material properties. To examine the characteristics of
load–depth distribution at general nonequi-biaxial resid-
ual stress states, we generated three-dimensional (3D) FE
models for Berkovich and conical indentations. Symme-
try in geometry and loading allows modeling a half for
Berkovich and a quarter for conical indenters. We com-
pared load–depth curves with element type and indenter
geometry for a specific equi-residual stress state. Two
load–depth curves of 3D Berkovich and cone models
coincide well with that of a two-dimensional axisymmet-
ric model, but further study is needed to generalize the
relationship between conical and Berkovich indenters
since the relationship depends on material properties.
For elastic materials, a Berkovich indenter gives a rela-
tively higher maximum load than an equivalent conical
indenter at the same indentation depth.17,18 Elastic–
plastic materials, including large elastic deformation,
i.e., large yield strain or small strain-hardening exponent
materials, thus show load deviation between conical and
Berkovich indenters.19,20 In this work, we adopted the
conical 3D model in subsequent analyses to estimate

general biaxial residual stresses since we used the coni-
cal indenter for equi-biaxial residual stress analyses.
Figure 8 reveals remarkable features. Maximum load
(Pmax) for nonequi-biaxial residual stress is related to
those of equi-biaxial residual stress states. Pmax for
(sR1, sR2) ¼ (�200, 0) nonequi-residual stress state is
virtually mean Pmax of equi-biaxial (�200, �200) and
(0, 0) states. Pmax for (�400, 0) is nearly mean Pmax of
(�400, �400) and (0, 0). Pmax for (�400, �200) is
almost mean Pmax of (�400, �400) and (�200, �200).
On this observation, we propose a procedure to evaluate
nonequi-biaxial residual stress if the ratio of residual
stress components k is known.

When the uniaxial residual stress state (sR1 6¼ 0,
sR2 ¼ 0) is assumed, we can estimate it from virtual
equi-biaxial residual stress. Using the measured Kick’s
law coefficient UniC at the uniaxial residual stress state,
we have the next expression:

UniC ¼
EquiCþ Co

2
; ð13Þ

where EquiC is Kick’s law coefficient when equi-biaxial
residual stress sR1 (¼ sR2) acts. Equation (13) can be

rewritten as EquiC ¼ 2
UniC� Co.
Using estimated EquiC, we can obtain the uniaxial re-

sidual stress sR1 from Eq. (10).

sR1

so

¼ f
Co � EquiC

so

; eo; n
� �

: ð14Þ

If we know the ratio of nonequi-biaxial residual stress,
k ¼ sR1/sR2 (sR1 6¼ sR2, sR1 6¼ 0, and sR2 6¼ 0), we
can also estimate them. Kick’s law coefficient BiC at
biaxial residual stress state obtained from the indentation
test is converted into two virtual equi-biaxial residual
stresses. For this conversion, we suppose the next
expression:

FIG. 8. The distribution of load–depth curves for various equi- and

nonequi-biaxial residual stresses.
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BiC ¼
EquiC1 þ EquiC2

2
: ð15Þ

EquiC1,
EquiC2 are virtual Kick’s law coefficients when

equi-biaxial residual stresses sR1 (¼ sR2), sR2 (¼ sR1)
act, respectively. We decompose the measured BiC into
two coefficients EquiC1 and

EquiC2 at equi-biaxial residual
stress states. If EquiC1 or EquiC2 is Co in Eq. (15), i.e.,
uniaxial residual stress state is assumed, BiC becomes
UniC, and Eq. (13) and Eq. (15) are identical. In a uniax-
ial residual stress state, we estimate residual stress with-
out iteration as we can measure or estimate Co. In a
general biaxial residual stress state, however, we use the
iterative method to estimate residual stresses. We first let
measured value BiC be the initial value

Equi
0C1, and add

small variation DC to
Equi

0C1, then calculate
Equi

1C2 from
Eq. (15) as follows:

Equi
1C1 ¼ Equi

0C1 þ DC
Equi

1C2 ¼ 2
BiC�Equi

1C1 :
ð16Þ

Substituting
Equi

1C1,
Equi

1C2 calculated from Eq. (16)
into Eq. (10), we estimate residual stresses 1sR1 and

1sR2, respectively. We repeatedly calculate them until
the error between 1sR1/1sR2 and k converges within the
tolerance limit. Figure 9 shows the flow chart for deter-
mination of biaxial residual stresses. Table II compares

the predicted with actual biaxial residual stresses for
some cases.

IV. EXPERIMENTAL VERIFICATION

The material chosen for the study was JIS SS400
(structural steel), which had been annealed at 780 �C to
remove residual stresses. The material properties
obtained from tensile test using the same specimen
were elastic modulus E ¼ 205 GPa, yield strength so ¼
290 GPa, and Poisson’s ratio n ¼ 0.3.21

The indentation tests with the same material were
conducted using our microindenter DKTT-3000 system
[Fig. 10(a)]. To impose linearly varied uniaxial residual
stresses on the specimen, we made a 4-point bending
jig as shown in Fig. 10(b). The gaps of inner and
outer loading points were 30 and 185 mm, respectively.
We mounted two strain gauges on the centerline of the
top and bottom surfaces of the specimen. Considering the
difference between pyramidal and conical indenters,17–20

we manufactured a 70.3� tungsten carbide conical in-
denter for the consistency with FE analysis. Four inden-
tations were made on the unstressed specimen with
indentation depth 0.2 mm, and these four curves were
almost identical, so that we chose one of them as a
reference load–depth data. We then imposed uniaxial
elastic residual stresses on the specimen by the 4-point

FIG. 9. Flow chart for determination of residual stresses.
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bending, and selected 15 positions (3 columns 	 5 rows)
on the surface spread with the column and row intervals
of 7.5 and 6 mm. The reference and five stressed load–
depth curves obtained from center column are shown in
Fig. 11. Note that the surface roughness is a very impor-
tant factor in nanoindentation tests, but it is not a critical
issue on microindentation tests. The maximum indenta-
tion depth is 0.2 mm, which is large enough to neglect
the effect of surface roughness on the residual stress and
hardness measurement. After correcting machine compli-
ance of the curves in Fig. 11, we calculate the coefficient
C of each curve, and then evaluate the residual stress on
each position via the method shown in Sec. III. C.

By applying Eq. (8) to the experimental load–depth
data, C and hg þ hi are calculated. Here, not only hg but
also initial penetration depth hi values are quite similar
for unstressed and stressed load–depth data, therefore
their hg þ hi values should also be similar to each other.
Because of experimental errors, however, they can have
different values and make a huge error of estimated re-
sidual stress. In the experiment, we assumed hg þ hi
values to be constant regardless of magnitude of residual
stress, and calculated C values only of stressed load–
depth curves using hg þ hi value obtained from un-
stressed load–depth curve. We then estimated C value of
each curve under virtual equi-biaxial residual stress state
using Eq. (13), and calculated uniaxial residual stress
substituting the C value and tensile material properties
into Eq. (14). Simultaneously, we measured the residual
stresses on both sides into which we converted strain
values measured by strain gauges, and then calculated

linearly interpolated residual stresses of the indented posi-
tions.

The residual stresses calculated by our method are
compared with those by strain gauges in Table III and
Fig. 12, which shows that we can well estimate residual
stress using indentation tests within the �20 MPa range.

TABLE II. Comparison of computed residual stresses to those given.

so ¼ 400 MPa, E ¼ 200 GPa, n ¼ 3

sR1 (MPa) sR2 (MPa)

Predicted

sR1 (MPa)

Predicted

sR2 (MPa) Error (%)

�400 0 �346 0 13

�400 �200 �385 �193 3.8

�400 �400 �377 �377 5.8

400 0 419 0 4.8

400 200 395 198 1.3

400 400 373 373 6.8

so ¼ 400 MPa, E ¼ 200 GPa, n ¼ 10

sR1 (MPa) sR2 (MPa)

Predicted

sR1 (MPa)

Predicted

sR2 (MPa) Error (%)

�200 0 �173 0 13

�400 0 �332 0 17

�200 �200 �189 �189 5.5

�400 �400 �382 �382 4.5

200 0 200 0 0.1

400 0 424 0 6.0

200 200 188 188 6.0

400 400 361 361 9.8

FIG. 10. (a) Configuration of indentation system DKTT-3000 and

(b) four-point bending jig (top view).
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On the basis of the experiment, we verified the validity
of the uniaxial residual stress evaluation method, which
is extended from the elastic biaxial residual stress evalu-
ation method, and hence we expect the biaxial residual
stress evaluation method to be also valid. Especially, in
the case where the material properties can be known in
advance, this method is useful to measure elastic residual
stresses because we do not need to measure contact area,
tip radius initial penetration depth.

V. CONCLUDING REMARKS

From FE analyses of conical indentation tests, we
investigated the relationships between indentation pa-
rameters and residual stresses. Hardness depends on the
magnitude and sign of residual stress and material prop-
erties, while some prior indentation studies reported that
hardness is unaffected by residual stress. Of course, there
are some studies that showed the hardness dependency
on residual stress, but they also did not explain the reason
and phenomenon well. Thus, in this work, we analyzed
the relation between hardness and residual stress based
on finite element analysis and the average indentation
depth concept, and from this, we laid out a logical basis
for the reason that hardness can depend on residual
stress.
On the basis of this observation, we suggested two

indentation methodologies to estimate elastic/plastic re-
sidual stress via finite element analysis. Using contact
area and plastic indentation depth, we first suggested
a method for evaluation of elastic/plastic equi-biaxial
residual stresses. Then, using tensile material properties
(i.e., elastic modulus, yield strength, and strain-hardening
exponent), we suggested another method for evaluation
of elastic equi-biaxial residual stresses regardless of
indenter tip rounding. The second method is practical
as it is unnecessary to know the contact area, measure-
ment of which makes indentation tests quite impractical.
Because the method reduces measuring errors caused by
friction and tip-radius effect, it substantially enhances the
accuracy than prior methods. We also suggested a new
method to evaluate general biaxial residual stress that
was extended from the equi-biaxial residual stress evalu-
ation method. Finally, we measured 4-point linearly var-
ied elastic bending stresses via conical indentation tests,
and confirmed that the suggested method is useful and
reliable for the evaluation of biaxial residual stress.
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APPENDIX: THE COEFFICIENT VALUES OF
REGRESSION FUNCTIONS OF EQS. (10)–(11)

TABLE AI. Coefficients of Eq. (10).

i ¼ 0

k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3

j ¼ 0 2.143e-1 �7.796eþ1 1.182eþ4 �5.679eþ5

j ¼ 1 �1.241eþ0 5.776eþ2 �8.732eþ4 4.222eþ6

j ¼ 2 3.654eþ0 �1.765eþ3 2.722eþ5 �1.332eþ7

j ¼ 3 �5.172eþ0 2.538eþ3 �3.978eþ5 1.973eþ7

j ¼ 4 2.780eþ0 �1.359eþ3 2.177eþ5 �1.091eþ7

i ¼ 1

k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3

j ¼ 0 �9.067e-3 4.348eþ0 �6.879eþ2 3.403eþ4

j ¼ 1 8.136e-2 �4.169eþ1 6.677eþ3 �3.339eþ5

j ¼ 2 �2.789e-1 1.485eþ2 �2.425eþ4 1.229eþ6

j ¼ 3 4.217e-1 �2.304eþ2 3.826eþ4 �1.961eþ6

j ¼ 4 �2.337e-1 1.300eþ2 �2.190eþ4 1.131eþ6

TABLE AII. Coefficients of Eq. (11).

j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 0 �4.300e-3 1.116eþ2 �6.630eþ3 2.275eþ5

i ¼ 1 3.590e-1 6.039eþ1 �2.043eþ3 �6.216eþ4

i ¼ 2 �6.629e-1 6.654eþ2 �1.021eþ5 4.843eþ6

i ¼ 3 2.339eþ0 �8.162eþ2 1.075eþ5 �4.849eþ6
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